2,878 research outputs found

    Rotational Evolution During Type I X-Ray Bursts

    Get PDF
    The rotation rates of six weakly-magnetic neutron stars accreting in low-mass X-ray binaries have most likely been measured by Type I X-ray burst observations with RXTE. The nearly coherent oscillations detected during the few seconds of thermonuclear burning are most simply understood as rotational modulation of brightness asymmetries on the neutron star surface. We show that, as suggested by Strohmayer and colleagues, the frequency changes of 1-2 Hz observed during bursts are consistent with angular momentum conservation as the burning shell hydrostatically expands and contracts. We calculate how vertical heat propagation through the radiative outer layers of the atmosphere and convection affect the coherence of the oscillation. We show that the evolution of the rotational profile depends strongly on whether the burning layers are composed of pure helium or mixed hydrogen/helium. Our results help explain the absence (presence) of oscillations from hydrogen-burning (helium-rich) bursts that was found by Muno and collaborators. We investigate angular momentum transport within the burning layers and the recoupling of the burning layers with the star. We show that the Kelvin-Helmholtz instability is quenched by the strong stratification, and that mixing between the burning fuel and underlying ashes by the baroclinic instability does not occur. However, the baroclinic instability may have time to operate within the differentially rotating burning layer, potentially bringing it into rigid rotation.Comment: To appear in The Astrophysical Journal; minor corrections made to tables and figure

    Scouting for Thrips in Orchid Flowers

    Get PDF
    Three monitoring methods are direct observation, flower shake, and the Berlese funnel, the latter being most accurate; instructions for constructing the funnel are given

    Essential and checkpoint functions of budding yeast ATM and ATR during meiotic prophase are facilitated by differential phosphorylation of a meiotic adaptor protein, Hop1

    Get PDF
    A hallmark of the conserved ATM/ATR signalling is its ability to mediate a wide range of functions utilizing only a limited number of adaptors and effector kinases. During meiosis, Tel1 and Mec1, the budding yeast ATM and ATR, respectively, rely on a meiotic adaptor protein Hop1, a 53BP1/Rad9 functional analog, and its associated kinase Mek1, a CHK2/Rad53-paralog, to mediate multiple functions: control of the formation and repair of programmed meiotic DNA double strand breaks, enforcement of inter-homolog bias, regulation of meiotic progression, and implementation of checkpoint responses. Here, we present evidence that the multi-functionality of the Tel1/Mec1-to-Hop1/Mek1 signalling depends on stepwise activation of Mek1 that is mediated by Tel1/Mec1 phosphorylation of two specific residues within Hop1: phosphorylation at the threonine 318 (T318) ensures the transient basal level Mek1 activation required for viable spore formation during unperturbed meiosis. Phosphorylation at the serine 298 (S298) promotes stable Hop1-Mek1 interaction on chromosomes following the initial phospho-T318 mediated Mek1 recruitment. In the absence of Dmc1, the phospho-S298 also promotes Mek1 hyper-activation necessary for implementing meiotic checkpoint arrest. Taking these observations together, we propose that the Hop1 phospho-T318 and phospho-S298 constitute key components of the Tel1/Mec1- based meiotic recombination surveillance (MRS) network and facilitate effective coupling of meiotic recombination and progression during both unperturbed and challenged meiosis

    Diagnosis of helminths depends on worm fecundity and the distribution of parasites within hosts

    Get PDF
    Helminth transmission and morbidity are dependent on the number of mature parasites within a host; however, observing adult worms is impossible for many natural infections. An outstanding challenge is therefore relating routine diagnostics, such as faecal egg counts, to the underlying worm burden. This relationship is complicated by density-dependent fecundity (egg output per worm reduces due to crowding at high burdens) and the skewed distribution of parasites (majority of helminths aggregated in a small fraction of hosts). We address these questions for the carcinogenic liver fluke Opisthorchis viverrini, which infects approximately 10 million people across Southeast Asia, by analysing five epidemiological surveys (n = 641) where adult flukes were recovered. Using a mechanistic model, we show that parasite fecundity varies between populations, with surveys from Thailand and Laos demonstrating distinct patterns of egg output and density-dependence. As the probability of observing faecal eggs increases with the number of mature parasites within a host, we quantify diagnostic sensitivity as a function of the worm burden and find that greater than 50% of cases are misdiagnosed as false negative in communities close to elimination. Finally, we demonstrate that the relationship between observed prevalence from routine diagnostics and true prevalence is nonlinear and strongly influenced by parasite aggregation

    Co2 capture and electrochemical conversion using superbasic [p-66614]-[124triz]

    Get PDF
    The ionic liquid trihexyltetradecylphosphonium 1,2,4- triazolide, [P66614][124Triz], has been shown to chemisorb CO2 through equimolar binding of the carbon dioxide with the 1,2,4-triazolide anion. This leads to a possible new, low energy pathway for the electrochemical reduction of carbon dioxide to formate and syngas at low overpotentials, utilizing this reactive ionic liquid media. Herein, an electrochemical investigation of water and carbon dioxide addition to the [P66614][124Triz] on gold and platinum working electrodes is reported. Electrolysis measurements have been performed using CO2 saturated [P66614][124Triz] based solutions at -0.9 V and -1.9 V on gold and platinum electrodes. The effects of the electrode material on the formation of formate and syngas using these solutions are presented and discussed18338940

    Multiexcitons confined within a sub-excitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals

    Full text link
    The use of ultrafast gating techniques allows us to resolve both spectrally and temporally the emission from short-lived neutral and negatively charged biexcitons in ultrasmall (sub-10 nm) CdSe nanocrystals (nanocrystal quantum dots). Because of forced overlap of electronic wave functions and reduced dielectric screening, these states are characterized by giant interaction energies of tens (neutral biexcitons) to hundreds (charged biexcitons) of meV. Both types of biexcitons show extremely short lifetimes (from sub-100 picoseconds to sub-picosecond time scales) that rapidly shorten with decreasing nanocrystal size. These ultrafast relaxation dynamics are explained in terms of highly efficient nonradiative Auger recombination.Comment: 5 pages, 4 figures, to be published in Phys. Rev.

    NONLINEARITIES, SCALE-DEPENDENCE, AND INDIVIDUALISM OF BOREAL FOREST TREES TO CLIMATE FORCING

    Get PDF
    Changes in climate are affecting tree growth, fire regimes and the geographic ranges of species (Beck et al. 2011; Kelly et al. 2013). Increasing our understanding of how boreal tree species respond to climate warming is critical for predicting the future states of the boreal forest and assessing the global impacts of these changes. Black spruce (Picea mariana [Mill.] B.S.P.) is the most abundant tree species in the Interior Alaskan boreal forest. Although it grows in a variety of community types (Hollingsworth et al. 2006), it is the only tree species found at the coldest, wettest sites on the landscape. Despite its abundance, very little is known about the climate-growth relationships of black spruce, as the majority of dendrochronological studies in Interior Alaska involve white spruce growing at treeline.Funding was provided by a National Science Foundation grant (ARC-0902169), the Scenarios Network for Alaska and Arctic Planning, and the Alaska Climate Science Center (Cooperative Agreement Number G10AC00588 from the U.S. Geological Survey)

    Assessing the efficiency of mother-to-child HIV prevention in low- and middle-income countries using data envelopment analysis

    Get PDF
    AIDS is one of the most significant health care problems worldwide. Due to the difficulty and costs involved in treating HIV, preventing infection is of paramount importance in controlling the AIDS epidemic. The main purpose of this paper is to explore the potential of using Data Envelopment Analysis (DEA) to establish international comparisons on the efficiency of implementation of HIV prevention programmes. To do this we use data from 52 low- and middle-income countries regarding the prevention of mother-to-child transmission of HIV. Our results indicate that there is a remarkable variation in the efficiency of prevention services across nations, suggesting that a better use of resources could lead to more and improved services, and ultimately, prevent the infection of thousands of children. These results also demonstrate the potential strategic role of DEA for the efficient and effective planning of scarce resources to fight the epidemic

    Principles of meiotic chromosome assembly revealed in S. cerevisiae

    Get PDF
    During meiotic prophase, chromosomes organise into a series of chromatin loops emanating from a proteinaceous axis, but the mechanisms of assembly remain unclear. Here we use Saccharomyces cerevisiae to explore how this elaborate three-dimensional chromosome organisation is linked to genomic sequence. As cells enter meiosis, we observe that strong cohesin-dependent grid-like Hi-C interaction patterns emerge, reminiscent of mammalian interphase organisation, but with distinct regulation. Meiotic patterns agree with simulations of loop extrusion with growth limited by barriers, in which a heterogeneous population of expanding loops develop along the chromosome. Importantly, CTCF, the factor that imposes similar features in mammalian interphase, is absent in S. cerevisiae, suggesting alternative mechanisms of barrier formation. While grid-like interactions emerge independently of meiotic chromosome synapsis, synapsis itself generates additional compaction that matures differentially according to telomere proximity and chromosome size. Collectively, our results elucidate fundamental principles of chromosome assembly and demonstrate the essential role of cohesin within this evolutionarily conserved process
    corecore