49 research outputs found

    Erratum: Author Correction: Transitions from Ideal to Intermediate Cholesterol Levels may vary by Cholesterol Metric (Scientific reports (2018) 8 1 (2782))

    Get PDF
    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper

    Heterogeneity in blood pressure transitions over the life course: Age-specific emergence of racial/ethnic and sex disparities in the United States

    Get PDF
    Importance: Many studies have assessed racial/ethnic and sex disparities in the prevalence of elevated blood pressure (BP) from childhood to adulthood, yet few have examined differences in age-specific transitions between categories of BP over the life course in contemporary, multiracial/multiethnic populations. Objective: To estimate age, racial/ethnic, and sex-specific annual net transition probabilities between categories of BP using Markov modeling of cross-sectional data from the National Health and Nutrition Examination Survey. Design, Setting, and Participants: National probability sample (National Health and Nutrition Examination Survey in 2007-2008, 2009-2010, and 2011-2012) of 17 747 African American, white American, and Mexican American participants aged 8 to 80 years. The data were analyzed from September 2014 to November 2015. Main Outcomes and Measures: Age-specific American Heart Association-defined BP categories. Results: Three National Health and Nutrition Examination Survey cross-sectional samples were used to characterize the ages at which self-reported African American (n = 4973), white American (n = 8886), and Mexican American (n = 3888) populations transitioned between ideal BP, prehypertension, and hypertension across the life course. At age 8 years, disparities in the prevalence of ideal BP were observed, with the prevalence being lower among boys (86.6%-88.8%) compared with girls (93.0%-96.3%). From ages 8 to 30 years, annual net transition probabilities from ideal to prehypertension among male individuals were more than 2 times the net transition probabilities of their female counterparts. The largest net transition probabilities for ages 8 to 30 years occurred in African American young men, among whom a net 2.9% (95% CI, 2.3%-3.4%) of those with ideal BP transitioned to prehypertension 1 year later. Mexican American young women aged 8 to 30 years experienced the lowest ideal to prehypertension net transition probabilities (0.6%; 95% CI, 0.3%-0.8%). After age 40 years, ideal to prehypertension net transition probabilities stabilized or decreased (range, 3.0%-4.5%) for men, whereas net transition probabilities for women increased rapidly (range, 2.6%-13.0%). Mexican American women exhibited the largest ideal to prehypertension net transition probabilities after age 60 years. The largest prehypertension to hypertension net transition probabilities occurred at young ages in boys of white race/ethnicity and African Americans, approximately age 8 years and age 25 years, respectively, while net transition probabilities for white women and Mexican Americans increased over the life course. Conclusions and Relevance: Heterogeneity in net transition probabilities from ideal BP emerge during childhood, with associated rapid declines in ideal BP observed in boys and African Americans, thus introducing disparities. Primordial prevention beginning in childhood and into early adulthood is necessary to preempt the development of prehypertension and hypertension, as well as associated racial/ethnic and sex disparities

    Transitions from Ideal to Intermediate Cholesterol Levels may vary by Cholesterol Metric

    Get PDF
    To examine the ability of total cholesterol (TC), a low-density lipoprotein cholesterol (LDL-C) proxy widely used in public health initiatives, to capture important population-level shifts away from ideal and intermediate LDL-C throughout adulthood. We estimated age (≥20 years)-, race/ethnic (Caucasian, African American, and Hispanic/Latino)-, and sex- specific net transition probabilities between ideal, intermediate, and poor TC and LDL-C using National Health and Nutrition Examination Survey (2007–2014; N = 13,584) and Hispanic Community Health Study/Study of Latinos (2008–2011; N = 15,612) data in 2016 and validated and calibrated novel Markov-type models designed for cross-sectional data. At age 20, >80% of participants had ideal TC, whereas the race/ethnic- and sex-specific prevalence of ideal LDL-C ranged from 39.2%-59.6%. Net transition estimates suggested that the largest one-year net shifts away from ideal and intermediate LDL-C occurred approximately two decades earlier than peak net population shifts away from ideal and intermediate TC. Public health and clinical initiatives focused on monitoring TC in middle-adulthood may miss important shifts away from ideal and intermediate LDL-C, potentially increasing the duration, perhaps by decades, that large segments of the population are exposed to suboptimal LDL-C

    Decentralised Commitment for Optimistic Semantic Replication

    Get PDF
    International audienceWe study large-scale distributed cooperative systems that use optimistic replication. We represent a system as a graph of actions (operations) connected by edges that reify semantic constraints between actions. Constraint types include conflict, execution order, dependence, and atomicity. The local state is some schedule that conforms to the constraints; because of conflicts, client state is only tentative. For consistency, site schedules should converge; we designed a decentralised, asynchronous commitment protocol. Each client makes a proposal, reflecting its tentative and/or preferred schedules. Our protocol distributes the proposals, which it decomposes into semantically-meaningful units called candidates, and runs an election between comparable candidates. A candidate wins when it receives a majority or a plurality. The protocol is fully asynchronous: each site executes its tentative schedule independently, and determines locally when a candidate has won an election. The committed schedule is as close as possible to the preferences expressed by clients

    Developing a multivariable prediction model for functional outcome after reperfusion therapy for acute ischaemic stroke: study protocol for the Targeting Optimal Thrombolysis Outcomes (TOTO) multicentre cohort study

    Get PDF
    INTRODUCTION: Intravenous thrombolysis (IVT) with recombinant tissue plasminogen activator (rt-PA) is the only approved pharmacological reperfusion therapy for acute ischaemic stroke. Despite population benefit, IVT is not equally effective in all patients, nor is it without significant risk. Uncertain treatment outcome prediction complicates patient treatment selection. This study will develop and validate predictive algorithms for IVT response, using clinical, radiological and blood-based biomarker measures. A secondary objective is to develop predictive algorithms for endovascular thrombectomy (EVT), which has been proven as an effective reperfusion therapy since study inception. METHODS AND ANALYSIS: The Targeting Optimal Thrombolysis Outcomes Study is a multicenter prospective cohort study of ischaemic stroke patients treated at participating Australian Stroke Centres with IVT and/or EVT. Patients undergo neuroimaging using multimodal CT or MRI at baseline with repeat neuroimaging 24 hours post-treatment. Baseline and follow-up blood samples are provided for research use. The primary outcome is good functional outcome at 90 days poststroke, defined as a modified Rankin Scale (mRS) Score of 0-2. Secondary outcomes are reperfusion, recanalisation, infarct core growth, change in stroke severity, poor functional outcome, excellent functional outcome and ordinal mRS at 90 days. Primary predictive models will be developed and validated in patients treated only with rt-PA. Models will be built using regression methods and include clinical variables, radiological measures from multimodal neuroimaging and blood-based biomarkers measured by mass spectrometry. Predictive accuracy will be quantified using c-statistics and R2. In secondary analyses, models will be developed in patients treated using EVT, with or without prior IVT, reflecting practice changes since original study design. ETHICS AND DISSEMINATION: Patients, or relatives when patients could not consent, provide written informed consent to participate. This study received approval from the Hunter New England Local Health District Human Research Ethics Committee (reference 14/10/15/4.02). Findings will be disseminated via peer-reviewed publications and conference presentations.Elizabeth Holliday ... Marten Snel ... Simon Koblar ... Monica Hamilton-Bruce ... Timothy Kleinig ... Paul J Trim ... et al

    1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function.

    Get PDF
    HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10(-8) previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples

    Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases

    Get PDF
    Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r =-0.62, P = 5.30 × 10-5) but not between CCT and primary open-angle glaucoma (r =-0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation

    Serum magnesium and calcium levels in relation to ischemic stroke : Mendelian randomization study

    Get PDF
    ObjectiveTo determine whether serum magnesium and calcium concentrations are causally associated with ischemic stroke or any of its subtypes using the mendelian randomization approach.MethodsAnalyses were conducted using summary statistics data for 13 single-nucleotide polymorphisms robustly associated with serum magnesium (n = 6) or serum calcium (n = 7) concentrations. The corresponding data for ischemic stroke were obtained from the MEGASTROKE consortium (34,217 cases and 404,630 noncases).ResultsIn standard mendelian randomization analysis, the odds ratios for each 0.1 mmol/L (about 1 SD) increase in genetically predicted serum magnesium concentrations were 0.78 (95% confidence interval [CI] 0.69-0.89; p = 1.3 7 10-4) for all ischemic stroke, 0.63 (95% CI 0.50-0.80; p = 1.6 7 10-4) for cardioembolic stroke, and 0.60 (95% CI 0.44-0.82; p = 0.001) for large artery stroke; there was no association with small vessel stroke (odds ratio 0.90, 95% CI 0.67-1.20; p = 0.46). Only the association with cardioembolic stroke was robust in sensitivity analyses. There was no association of genetically predicted serum calcium concentrations with all ischemic stroke (per 0.5 mg/dL [about 1 SD] increase in serum calcium: odds ratio 1.03, 95% CI 0.88-1.21) or with any subtype.ConclusionsThis study found that genetically higher serum magnesium concentrations are associated with a reduced risk of cardioembolic stroke but found no significant association of genetically higher serum calcium concentrations with any ischemic stroke subtype

    1000 Genomes-based metaanalysis identifies 10 novel loci for kidney function

    Get PDF
    HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-Analysis of kidney function based on the estimated glomerular filtration rate (EGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10-8 previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, wh

    Selection of reagents for combinatorial synthesis using clique detection

    No full text
    The identification of a database subset in which all pairs of molecules have similarities less than some user-defined threshold is shown to be equivalent to the graph-theoretic problem of clique-detection. A comparison of several different clique-detection algorithms demonstrates that the algorithm due to Babel is by far the most efficient for this particular problem. The database subsets identified by the Babel algorithm are slightly more diverse than those identified by alternative, less time-consuming algorithms for dissimilarity-based compound selection
    corecore