487 research outputs found

    Effective grain surface area in the formation of molecular hydrogen in interstellar clouds

    Full text link
    In the interstellar clouds, molecular hydrogens are formed from atomic hydrogen on grain surfaces. An atomic hydrogen hops around till it finds another one with which it combines. This necessarily implies that the average recombination time, or equivalently, the effective grain surface area depends on the relative numbers of atomic hydrogen influx rate and the number of sites on the grain. Our aim is to discover this dependency. We perform a numerical simulation to study the recombination of hydrogen on grain surfaces in a variety of cloud conditions. We use a square lattice (with a periodic boundary condition) of various sizes on two types of grains, namely, amorphous carbon and olivine. We find that the steady state results of our simulation match very well with those obtained from a simpler analytical consideration provided the `effective' grain surface area is written as Sα\sim S^{\alpha}, where, SS is the actual physical grain area and α\alpha is a function of the flux of atomic hydrogen which is determined from our simulation. We carry out the simulation for various astrophysically relevant accretion rates. For high accretion rates, small grains tend to become partly saturated with HH and H2H_2 and the subsequent accretion will be partly inhibited. For very low accretion rates, the number of sites to be swept before a molecular hydrogen can form is too large compared to the actual number of sites on the grain, implying that α\alpha is greater than unity.Comment: 8 pages, 5 figures in eps forma

    SWAS and Arecibo observations of H2O and OH in a diffuse cloud along the line-of-sight to W51

    Get PDF
    Observations of W51 with the Submillimeter Wave Astronomy Satellite (SWAS) have yielded the first detection of water vapor in a diffuse molecular cloud. The water vapor lies in a foreground cloud that gives rise to an absorption feature at an LSR velocity of 6 km/s. The inferred H2O column density is 2.5E+13 cm-2. Observations with the Arecibo radio telescope of hydroxyl molecules at ten positions in W51 imply an OH column density of 8E+13 cm-2 in the same diffuse cloud. The observed H2O/OH ratio of ~ 0.3 is significantly larger than an upper limit derived previously from ultraviolet observations of the similar diffuse molecular cloud lying in front of HD 154368. The observed variation in H2O/OH likely points to the presence in one or both of these clouds of a warm (T > 400) gas component in which neutral-neutral reactions are important sources of OH and/or H2O.Comment: 15 pages (AASTeX) including 4 (eps) figures. To appear in the Astrophysical Journa

    The Mid-Infrared Spectrum of Star-Forming Galaxies: Global Properties of PAH Emission

    Get PDF
    We present a sample of low-resolution 5-38um Spitzer IRS spectra of the inner few square kiloparsecs of 59 nearby galaxies spanning a large range of star formation properties. A robust method for decomposing mid-infrared galaxy spectra is described, and used to explore the behavior of PAH emission and the prevalence of silicate dust extinction. Evidence for silicate extinction is found in ~1/8 of the sample, at strengths which indicate most normal galaxies undergo A_V < ~3 magnitudes averaged over their centers. The contribution of PAH emission to the total infrared power is found to peak near 10% and extend up to ~20%, and is suppressed at metallicities Z < ~Z_sun/4, as well as in low-luminosity AGN environments. Strong inter-band PAH feature strength variations (2-5x) are observed, with the presence of a weak AGN and, to a lesser degree, increasing metallicity shifting power to the longer wavelength bands. A peculiar PAH emission spectrum with markedly diminished 5-8um features arises among the sample solely in systems with relatively hard radiation fields harboring low-luminosity AGN. The AGN may modify the emitting grain distribution and provide the direct excitation source of the unusual PAH emission, which cautions against using absolute PAH strength to estimate star formation rates in systems harboring active nuclei. Alternatively, the low star formation intensity often associated with weak AGN may affect the spectrum. The effect of variations in the mid-infrared spectrum on broadband infrared surveys is modeled, and points to more than a factor of two uncertainty in results which assume a fixed PAH emission spectrum, for redshifts z=0-2.5.Comment: Accepted for publication in ApJ, 24 pages (abstract typo fixed, reference added

    c2d Spitzer IRS spectra of embedded low-mass young stars: gas-phase emission lines

    Get PDF
    A survey of mid-IR gas-phase emission lines of H2, H2O and various atoms toward a sample of 43 embedded low-mass young stars in nearby star-forming regions is presented. The sources are selected from the Spitzer "Cores to Disks" (c2d) legacy program. The environment of embedded protostars is complex both in its physical structure (envelopes, outflows, jets, protostellar disks) and the physical processes (accretion, irradiation by UV and/or X-rays, excitation through slow and fast shocks) which take place. A key point is to spatially resolve the emission in the Spitzer-IRS spectra. An optimal extraction method is used to separate both spatially unresolved (compact, up to a few 100 AU) and spatially resolved (extended, 1000 AU or more) emission from the IRS spectra. The results are compared with the c2d disk sample and literature PDR and shock models to address the physical nature of the sources. Both compact and extended emission features are observed. Warm (Tex few 100 K) H2, observed through the pure rotational H2 S(0), S(1) and S(2) lines, and [S I] 25 mu emission is observed primarily in the extended component. [S I] is observed uniquely toward truly embedded sources and not toward disks. On the other hand hot (Tex>700 K) H2, observed primarily through the S(4) line, and [Ne II] emission is seen mostly in the compact component. [Fe II] and [Si II] lines are observed in both spatial components. Hot H2O emission is found in the compact component of some sources. The observed emission on >=1000 AU scales is characteristic of PDR emission and likely originates in the outflow cavities in the remnant envelope created by the stellar wind and jets from the embedded young stars. Weak shocks along the outflow wall can also contribute. The compact emission is likely of mixed origin, comprised of optically thick circumstellar disk and/or jet/outflow emission from the protostellar object.Comment: 22 pages, 11 figures, accepted for publication in A&

    The Spectral Energy Distribution of Dust Emission in the Edge-on spiral galaxy NGC 4631 as seen with Spitzer and the James Clerk Maxwell telescope

    Get PDF
    We explore variations in dust emission within the edge-on Sd spiral galaxy NGC 4631 using 3.6-160 μm Spitzer Space Telescope data and 450-850 μm JCMT data with the goals of understanding the relation between PAHs and dust emission, studying the variations in the colors of the dust emission, and searching for possible excess submillimeter emission compared to what is expected from dust models extrapolated from far-infrared wavelengths. The 8 μm PAH emission correlates best with 24 μm hot dust emission on 1.7 kpc scales, but the relation breaks down on 650 pc scales, possibly because of differences in the mean free paths between photons that excite the PAHs and photons that heat the dust and possibly because the PAHs are destroyed by the hard radiation fields within some star formation regions. The ratio of 8 μm PAH emission to 160 μm cool dust emission appears to vary as a function of radius. The 70 μm/160 μm and 160 μm/450 μm flux density ratios are remarkably constant even though the surface brightnesses vary by factors of 25, which suggests that the emission is from dust heated by a nearly uniform radiation field. Globally, we find an excess of 850-1230 μm emission relative to what would be predicted by dust models. The 850 μm excess is highest in regions with low 160 μm surface brightnesses, although the magnitude depends on the model fit to the data. We rule out variable emissivity functions or ~4 K dust as the possible origins of this 850 μm emission, but we do discuss the other possible mechanisms that could produce the emission

    High-resolution absorption spectroscopy of the OH 2Pi 3/2 ground state line

    Full text link
    The chemical composition of the interstellar medium is determined by gas phase chemistry, assisted by grain surface reactions, and by shock chemistry. The aim of this study is to measure the abundance of the hydroxyl radical (OH) in diffuse spiral arm clouds as a contribution to our understanding of the underlying network of chemical reactions. Owing to their high critical density, the ground states of light hydrides provide a tool to directly estimate column densities by means of absorption spectroscopy against bright background sources. We observed onboard the SOFIA observatory the 2Pi3/2, J = 5/2 3/2 2.5 THz line of ground-state OH in the diffuse clouds of the Carina-Sagittarius spiral arm. OH column densities in the spiral arm clouds along the sightlines to W49N, W51 and G34.26+0.15 were found to be of the order of 10^14 cm^-2, which corresponds to a fractional abundance of 10^-7 to 10^-8, which is comparable to that of H_2O. The absorption spectra of both species have similar velocity components, and the ratio of the derived H_2O to OH column densities ranges from 0.3 to 1.0. In W49N we also detected the corresponding line of ^18OH

    Influence of UV radiation from a massive YSO on the chemistry of its envelope

    Get PDF
    We have studied the influence of far ultraviolet (UV) radiation from a massive young stellar object (YSO) on the chemistry of its own envelope by extending the models of Doty et al. (2002) to include a central source of UV radiation. The models are applied to the massive star-forming region AFGL 2591 for different inner UV field strengths. Depth-dependent abundance profiles for several molecules are presented and discussed. We predict enhanced column densities for more than 30 species, especially radicals and ions. Comparison between observations and models is improved with a moderate UV field incident on the inner envelope, corresponding to an enhancement factor G0~10-100 at 200 AU from the star with an optical depth tau~15-17. Subtle differences are found compared with traditional models of Photon Dominated Regions (PDRs) because of the higher temperatures and higher gas-phase H2O abundance caused by evaporation of ices in the inner region. In particular, the CN/HCN ratio is not a sensitive tracer of the inner UV field, in contrast with the situation for normal PDRs: for low UV fields, the extra CN reacts with H2 in the inner dense and warm region and produces more HCN. It is found that the CH+ abundance is strongly enhanced and grows steadily with increasing UV field. High-J lines of molecules like CN and HCN are most sensitive to the inner dense region where UV radiation plays a role. Thus, even though the total column density affected by UV photons is small, comparison of high-J and low-J lines can selectively trace and distinguish the inner UV field from the outer one. In addition, future Herschel-HIFI observations of hydrides can sensitively probe the inner UV field.Comment: Accepted for publication in A&A. 13 pages, 10 figure

    The Cassiopeia A Supernova was of Type IIB

    Full text link
    Cassiopeia A is one of the youngest supernova remnants known in the Milky Way and a unique laboratory for supernova physics. We present an optical spectrum of the Cassiopeia A supernova near maximum brightness, obtained from observations of a scattered light echo - more than three centuries after the direct light of the explosion swept past Earth. The spectrum shows that Cassiopeia A was a type IIb supernova and originated from the collapse of the helium core of a red supergiant that had lost most of its hydrogen envelope prior to exploding. Our finding concludes a longstanding debate on the Cassiopeia A progenitor and provides new insight into supernova physics by linking the properties of the explosion to the wealth of knowledge about its remnant.Comment: 17 pages, 4 figures, including online supporting material; to be published in Science on 30 May 200
    corecore