10 research outputs found

    Impact of changing climate on bryophyte contributions to terrestrial water, carbon, and nitrogen cycles

    Get PDF
    Bryophytes, including the lineages of mosses, liverworts, and hornworts, are the second-largest photoautotroph group on Earth. Recent work across terrestrial ecosystems has highlighted how bryophytes retain and control water, fix substantial amounts of carbon (C), and contribute to nitrogen (N) cycles in forests (boreal, temperate, and tropical), tundra, peatlands, grasslands, and deserts. Understanding how changing climate affects bryophyte contributions to global cycles in different ecosystems is of primary importance. However, because of their small physical size, bryophytes have been largely ignored in research on water, C, and N cycles at global scales. Here, we review the literature on how bryophytes influence global biogeochemical cycles, and we highlight that while some aspects of global change represent critical tipping points for survival, bryophytes may also buffer many ecosystems from change due to their capacity for water, C, and N uptake and storage. However, as the thresholds of resistance of bryophytes to temperature and precipitation regime changes are mostly unknown, it is challenging to predict how long this buffering capacity will remain functional. Furthermore, as ecosystems shift their global distribution in response to changing climate, the size of different bryophyte-influenced biomes will change, resulting in shifts in the magnitude of bryophyte impacts on global ecosystem functions

    SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway

    Get PDF
    Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant

    Draft Genome Sequence of the Pyridinediol-Fermenting Bacterium Synergistes jonesii 78-1

    No full text
    Here we present the draft genome of Synergistes jonesii 78-1, ATCC 49833, a member of the Synergistes phylum. This organism was isolated from the rumen of a Hawaiian goat and ferments pyridinediols. The assembly contains 2,747,397 bp in 61 contigs

    Draft Genome Sequence of the Pyridinediol-Fermenting Bacterium Synergistes jonesii 78-1.

    No full text
    Here we present the draft genome of Synergistes jonesii 78-1, ATCC 49833, a member of the Synergistes phylum. This organism was isolated from the rumen of a Hawaiian goat and ferments pyridinediols. The assembly contains 2,747,397 bp in 61 contigs

    Weight-bearing in ankle fractures: An audit of UK practice.

    No full text
    INTRODUCTION: The purpose of this national study was to audit the weight-bearing practice of orthopaedic services in the National Health Service (NHS) in the treatment of operatively and non-operatively treated ankle fractures. METHODS: A multicentre prospective two-week audit of all adult ankle fractures was conducted between July 3rd 2017 and July 17th 2017. Fractures were classified using the AO/OTA classification. Fractures fixed with syndesmosis screws or unstable fractures (>1 malleolus fractured or talar shift present) treated conservatively were excluded. No outcome data were collected. In line with NICE (The National Institute for Health and Care Excellence) criteria, "early" weight-bearing was defined as unrestricted weight-bearing on the affected leg within 3 weeks of injury or surgery and "delayed" weight-bearing as unrestricted weight-bearing permitted after 3 weeks. RESULTS: 251 collaborators from 81 NHS hospitals collected data: 531 patients were managed non-operatively and 276 operatively. The mean age was 52.6 years and 50.5 respectively. 81% of non-operatively managed patients were instructed for early weight-bearing as recommended by NICE. In contrast, only 21% of operatively managed patients were instructed for early weight-bearing. DISCUSSION: The majority of patients with uni-malleolar ankle fractures which are managed non-operatively are treated in accordance with NICE guidance. There is notable variability amongst and within NHS hospitals in the weight-bearing instructions given to patients with operatively managed ankle fractures. CONCLUSION: This study demonstrates community equipoise and suggests that the randomized study to determine the most effective strategy for postoperative weight-bearing in ankle fractures described in the NICE research recommendation is feasible

    Genomic reconstruction of the SARS-CoV-2 epidemic in England

    Get PDF
    AbstractThe evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021.</jats:p

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∌150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020
    corecore