157 research outputs found
The Effect of High-Power and Low-Power Lasers on Symptoms and the Nerve Conduction Study in Patients With Carpal Tunnel Syndrome. A Prospective Randomized Single-Blind Clinical Trial
Introduction: Carpal tunnel syndrome (CTS) is the most common peripheral nerve entrapment. Various treatments have been suggested for CTS and there is no consensus on their superiority and the order of their use. Laser therapy is a non-invasive treatment method for many musculoskeletal diseases, including CTS. This study aimed to determine and compare the effect of high-power lasers (HPLs) and low-power lasers (LPLs) on pain severity, function, pinch strength, and nerve conduction study findings in patients aged 30-50 years with mild or moderate CTS. Methods: This is a prospective, randomized, single-blind clinical trial. The study population included 45 patients aged 30-50 years who came to the physical medicine and rehabilitation clinic of Shohada-e-Tajrish hospital and mild or moderate CTS was confirmed for them. Patients were randomly assigned to control, LPL therapy, and HPL therapy groups. Pain, function, pinch strength, and nerve conduction study findings were recorded in all groups before, immediately and 12 weeks after the treatment. All data were compared using SPSS version 21. Results: All groups showed improvement regarding pain, function, and pinch strength. Laser therapy showed significantly better results compared to a wrist splint, but no significant difference was seen between high-power and LPL therapy groups. Nerve conduction evaluation findings did not reveal any significant difference. Conclusion: Both the wrist splint and laser therapy can improve the symptoms of carpal tunnel syndrome. HPL therapy showed better results, although not significantly different from LPL therapy. © 2020. All rights reserved
A new approach to cosmological perturbations in f(R) models
We propose an analytic procedure that allows to determine quantitatively the
deviation in the behavior of cosmological perturbations between a given f(R)
modified gravity model and a LCDM reference model. Our method allows to study
structure formation in these models from the largest scales, of the order of
the Hubble horizon, down to scales deeply inside the Hubble radius, without
employing the so-called "quasi-static" approximation. Although we restrict our
analysis here to linear perturbations, our technique is completely general and
can be extended to any perturbative order.Comment: 21 pages, 2 figures; Revised version according to reviewer's
suggestions; Typos corrected; Added Reference
Modulation of presynaptic plasticity and learning by the H-ras/extracellular signal-regulated kinase/synapsin I signaling pathway
Molecular and cellular studies of the mechanisms underlying mammalian learning and memory have focused almost exclusively on
postsynaptic function. We now reveal an experience-dependent presynaptic mechanism that modulates learning and synaptic plasticity
in mice. Consistent with a presynapticfunctionfor endogenous H-ras/extracellular signal-regulated kinase (ERK) signaling, we observed
that, under normal physiologic conditions in wild-type mice, hippocampus-dependent learning stimulated the ERK-dependent phosphorylation
of synapsin I, and MEK (MAP kinase kinase)/ERK inhibition selectively decreased the frequency of miniature EPSCs. By
generating transgenic mice expressing a constitutively active form of H-ras (H-rasG12V), which is abundantly localized in axon terminals,
we were able to increase the ERK-dependent phosphorylation of synapsin I. This resulted in several presynaptic changes, including a
higher density of docked neurotransmitter vesiclesin glutamatergicterminals, anincreasedfrequency of miniature EPSCs, andincreased
paired-pulse facilitation. In addition, we observed facilitated neurotransmitter release selectively during high-frequency activity with
consequent increases in long-term potentiation. Moreover, these mice showed dramatic enhancements in hippocampus-dependent
learning. Importantly, deletion of synapsin I, an exclusively presynaptic protein, blocked the enhancements of learning, presynaptic
plasticity, and long-term potentiation. Together with previous invertebrate studies, these results demonstrate that presynaptic plasticity
represents an important evolutionarily conserved mechanism for modulating learning and memory
Cosmological distance indicators
We review three distance measurement techniques beyond the local universe:
(1) gravitational lens time delays, (2) baryon acoustic oscillation (BAO), and
(3) HI intensity mapping. We describe the principles and theory behind each
method, the ingredients needed for measuring such distances, the current
observational results, and future prospects. Time delays from strongly lensed
quasars currently provide constraints on with < 4% uncertainty, and with
1% within reach from ongoing surveys and efforts. Recent exciting discoveries
of strongly lensed supernovae hold great promise for time-delay cosmography.
BAO features have been detected in redshift surveys up to z <~ 0.8 with
galaxies and z ~ 2 with Ly- forest, providing precise distance
measurements and with < 2% uncertainty in flat CDM. Future BAO
surveys will probe the distance scale with percent-level precision. HI
intensity mapping has great potential to map BAO distances at z ~ 0.8 and
beyond with precisions of a few percent. The next years ahead will be exciting
as various cosmological probes reach 1% uncertainty in determining , to
assess the current tension in measurements that could indicate new
physics.Comment: Review article accepted for publication in Space Science Reviews
(Springer), 45 pages, 10 figures. Chapter of a special collection resulting
from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in
the Space Ag
LoCuSS: Testing hydrostatic equilibrium in galaxy clusters
We test the assumption of hydrostatic equilibrium in an X-ray luminosity selected sample of 50 galaxy clusters at from the Local Cluster Substructure Survey (LoCuSS). Our weak-lensing measurements of control systematic biases to sub-4 per cent, and our hydrostatic measurements of the same achieve excellent agreement between XMM-Newton and Chandra. The mean ratio of X-ray to lensing mass for these 50 clusters is , and for the 44 clusters also detected by Planck, the mean ratio of Planck mass estimate to LoCuSS lensing mass is . Based on a careful like-for-like analysis, we find that LoCuSS, the Canadian Cluster Comparison Project (CCCP), and Weighing the Giants (WtG) agree on at . This small level of hydrostatic bias disagrees at with the level required to reconcile Planck cosmology results from the cosmic microwave background and galaxy cluster counts
Prediction and Topological Models in Neuroscience
In the last two decades, philosophy of neuroscience has predominantly focused on explanation. Indeed, it has been argued that mechanistic models are the standards of explanatory success in neuroscience over, among other things, topological models. However, explanatory power is only one virtue of a scientific model. Another is its predictive power. Unfortunately, the notion of prediction has received comparatively little attention in the philosophy of neuroscience, in part because predictions seem disconnected from interventions. In contrast, we argue that topological predictions can and do guide interventions in science, both inside and outside of neuroscience. Topological models allow researchers to predict many phenomena, including diseases, treatment outcomes, aging, and cognition, among others. Moreover, we argue that these predictions also offer strategies for useful interventions. Topology-based predictions play this role regardless of whether they do or can receive a mechanistic interpretation. We conclude by making a case for philosophers to focus on prediction in neuroscience in addition to explanation alone
Silymarin-albumin nanoplex: preparation and its potential application as an antioxidant in nervous system in vitro and in vivo
In this study, we formulated silymarin-HSA nanoplex and assayed its ability to reduce LPSinduced toxicity in vitro and in vivo. Silymarin molecules were encapsulated into HSA nanoplex and the loading efficiency and characterization of fabricated nanoplex were performed
by using HPLC, TEM, SEM, DLS, FTIR analysis, and theoretical studies. Afterwards, their protective effect against LPS (20 µg/ml) -induced toxicity in SH-SY5Y cells was investigated by MTT, ROS, and apoptosis assays. For in vivo experiments, rats were pre-treated with either
silymarin or silymarin -HSA nanoplex (200 mg/kg) orally for 3 days and at third day received LPS by IP at a dose of 0.5 mg/kg, 150 min before scarification followed by SOD and CAT activity assay. The formulation of silymarin-HSA nanoplex showed a spherical shape with an average
diameter between 50 nm to 150 nm, hydrodynamic radius of 188.3 nm, zeta potential of -26.6 mV, and a drug loading of 97.3%. In LPS-treated cells, pretreatments with silymarin-HSA noncomplex recovered the cell viability and decreased the ROS level and corresponding apoptosis more
significantly than free silymarin. In rats, it was also depicted that, silymarin-HSA noncomplex can increase the SOD and CAT activity in brain tissue at LPS-triggered oxidative stress model more significantly than free counterpart. Nanoformulation of silymarin improved its capability to reduce LPS-induced oxidative stress by restoring cell viability and elevation of SOD and CAT activity in vitro and in vivo, respectively. Therefore, formulation of silymarin may hold a great promise in
the field of antioxidant agent development
Tooling design and microwave curing technologies for the manufacturing of fiber-reinforced polymer composites in aerospace applications
The increasing demand for high-performance and quality polymer composite materials has led to international research effort on pursuing advanced tooling design and new processing technologies to satisfy the highly specialized requirements of composite components used in the aerospace industry. This paper reports the problems in the fabrication of advanced composite materials identified through literature survey, and an investigation carried out by the authors about the composite manufacturing status in China’s aerospace industry. Current tooling design technologies use tooling materials which cannot match the thermal expansion coefficient of composite parts, and hardly consider the calibration of tooling surface. Current autoclave curing technologies cannot ensure high accuracy of large composite materials because of the wide range of temperature gradients and long curing cycles. It has been identified that microwave curing has the potential to solve those problems. The proposed technologies for the manufacturing of fiber-reinforced polymer composite materials include the design of tooling using anisotropy composite materials with characteristics for compensating part deformation during forming process, and vacuum-pressure microwave curing technology. Those technologies are mainly for ensuring the high accuracy of anisotropic composite parts in aerospace applications with large size (both in length and thickness) and complex shapes. Experiments have been carried out in this on-going research project and the results have been verified with engineering applications in one of the project collaborating companies
A census of baryons in the Universe from localized fast radio bursts
More than three quarters of the baryonic content of the Universe resides in a
highly diffuse state that is difficult to observe, with only a small fraction
directly observed in galaxies and galaxy clusters. Censuses of the nearby
Universe have used absorption line spectroscopy to observe these invisible
baryons, but these measurements rely on large and uncertain corrections and are
insensitive to the majority of the volume, and likely mass. Specifically,
quasar spectroscopy is sensitive either to only the very trace amounts of
Hydrogen that exists in the atomic state, or highly ionized and enriched gas in
denser regions near galaxies. Sunyaev-Zel'dovich analyses provide evidence of
some of the gas in filamentary structures and studies of X-ray emission are
most sensitive to gas near galaxy clusters. Here we report the direct
measurement of the baryon content of the Universe using the dispersion of a
sample of localized fast radio bursts (FRBs), thus utilizing an effect that
measures the electron column density along each sight line and accounts for
every ionised baryon. We augment the sample of published arcsecond-localized
FRBs with a further four new localizations to host galaxies which have measured
redshifts of 0.291, 0.118, 0.378 and 0.522, completing a sample sufficiently
large to account for dispersion variations along the line of sight and in the
host galaxy environment to derive a cosmic baryon density of (95% confidence). This independent
measurement is consistent with Cosmic Microwave Background and Big Bang
Nucleosynthesis values.Comment: Published online in Nature 27 May, 202
Spatial navigation impairment in mice lacking cerebellar LTD: a motor adaptation deficit?
L7-PKCI transgenic mice, having a specific lack of parallel fiber-Purkinje cell LTD,
were tested with two different mazes to dissociate the relative importance of
declarative and procedural components of spatial navigation. Our data bring
evidence for a deficit of L7-PKCI mice in the acquisition of an adapted goal-oriented
behavior, i.e. in the procedural component of the task. This finding supports the
hypothesis that cerebellar LTD may subserve a general sensory-motor adaptation
process shared by motor and spatial learning functions
- …