85 research outputs found

    The role of SDHA in the tissue-specific regulation of metabolism and proteomic approaches to identify novel ClpXP substrates

    Get PDF
    After Theodor Schwann formulated the first cell theory in 1839, another 60 years of histological advances passed by before mitochondria were discovered and the name was phrased. Yet, 120 years later, many aspects of mitochondrial biology remain enigmatic and mitochondria emerged as fundamental organelles of almost all eukaryotes far beyond the role as the powerhouses of the cell. To contribute to the continuously growing understanding of these multifaceted organelles, the roles of succinate dehydrogenase subunit A (SDHA) and ATP-dependent Clp protease (ClpXP) in mitochondrial metabolism and proteostasis, respectively, were investigated in vivo and in vitro. Conditional knockout of SDHA in the heart and striated muscles caused isolated complex II deficiency and ultimately organ failure. However, metabolic differences of these tissues result in varying adaptations and stress responses. This finding emphasizes the significance of the metabolic background, even if the primary defect is ATP depletion. This is particularly important for the treatment of malignant cells with SDH mutations, as the affected cell types can differ in terms of metabolic adaptations. In order to understand the role of ClpXP in mitochondrial proteostasis, diverse proteomic approaches were employed to identify novel ClpXP targets as well as to address the mode of degradation and potentially tissue-specific activity. The combination of a classical in vitro substrate screen and the recently developed N-terminome quantification identified or confirmed several bona fide ClpXP substrates and a clear preference for arginine at the P1 position of the cleavage site. Furthermore, the development of an in vivo model for the conditional expression of CLPP in mouse hearts provided the proof of principle for tissue specific substrate screens and confirmed CLPX as the rate-limiting subunit in vivo

    Physical properties and fase transitions of banana nanica on applying an initial HTST drying pulse

    Get PDF
    Orientador: Celso Costa LopesTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de AlimentosResumo: Neste trabalho estudou-se a secagem de banana utilizando um pulso inicial a alta temperatura e curto tempo, combinado com uma etapa de secagem convencional a ar quente a 70°C. Numa primeira etapa, foram analisadas as mudanças de encolhimento, porosidade e estrutura ao longo da secagem com bananas de origem portuguesa e brasileira. Esses resultados foram comparados com os de uma secagem convencional feita somente a 70°C. Na segunda etapa, estudaram-se as isotermas de sorção e as transições de fase nas amostras das duas origens (Portugal e Brasil) através de Calorimetria Diferencial de Varredura. Os resultados da primeira parte mostraram que o grau de encolhimento da banana foi maior para a secagem convencional a 70°C, na qual o volume apresentou um decréscimo linear com o conteúdo de umidade, chegando a 30%, enquanto que a porosidade aumentou progressivamente até 32%. A secagem combinada resultou na formação de um produto com uma estrutura altamente porosa (45,5% a 57,5%) e menor grau de encolhimento (42% a 68,5%), quando comparada com a secagem convencional a 70°C. As observações estruturais nas amostras de banana ajudaram a explicar as mudanças na porosidade e encolhimento. Os resultados das isotermas de sorção tiveram um bom ajuste para o modelo de BET e de GAB para as amostras frescas de origem portuguesa e, para as amostras secas das duas origens, o modelo de GAB foi o mais adequado. A ocorrência da temperatura de transição vítrea foi verificada em todas as amostras estudadas e decresceu com o aumento do conteúdo de umidade, comprovando o efeito plasticizante da água. O modelo de Gordon-Taylor permitiu uma boa predição da dependência da temperatura de transição vítrea com o conteúdo de água para as amostras de origem portuguesa. No caso das amostras de origem brasileira, foi encontrada uma relação de dependência linear do parâmetro kGT do modelo de Gordon-Taylor com a temperatura de transição vítrea experimentalAbstract: This study was conducted to evaluate the drying of bananas by a high temperature and short time drying pulse combined with hot air-drying process stage at 70°C. Firstly, Portuguese and Brazilian bananas samples were dried and the changes of shrinkage, porosity and structure during drying were analyzed. This results were compared with those obtained in a conventional air-drying process at 70°C. After that, sorption isotherms of samples from Portugal and Brazil, as well the phase transitions of the Brazilian banana, were studied. The results of the first part showed that shrinkage changes during drying was more intense to the conventional air-drying process at 70°C, and a line ar decrease in volume with the decrease in moisture ratio was observed reaching 30%, while the porosity increased uniformly reaching values of about 32%. The high temperature and short time drying pulse combined with hot air- drying process stage at 70°C resulted in the formation of a highly porous structure (45,5% to 57,5%) and reduced shrinkage (42% to 68,5%) when compared with the conventional air-drying process. Structural observations of the banana samples during the processes studied were able to explain the volume and porosity changes. The BET and GAB equations gave the best fit to the experimental sorption data for Portuguese fresh bananas and the GAB model was found to be the best-fitted equation for all dried bananas (Portuguese and Brazilian samples) and both models gave information about the shelf-stability for the samples. The glass transition temperature occurred for all samples studied and decreased as water content increased, confirming the water plasticization effect. The Gordon-Taylor equation was able to predict the dependence of the glass transition temperature on moisture content for the Portuguese fresh samples. A linear dependence of the kGT (Gordon-Taylor equation¿s constant) and the experimental glass transition temperature was found for the Brazilian samplesDoutoradoDoutor em Engenharia de Alimento

    Crispy banana obtained by the combination of a high temperature and short time drying stage and a drying process

    Get PDF
    The effect of the high temperature and short time (HTST) drying stage was combined with an air drying process to produce crispness in bananas. The fruit was dehydrated in an air drier for five minutes at 70 degrees C and then immediately set at a HTST stage (130, 140, 150 degrees C and 9, 12, 15 minutes) and then at 70 degrees C until water activity (a(w)) was around 0.300. Crispness was evaluated as a function of water activity, using sensory and texture analyses. Drying kinetics was evaluated using the empirical Lewis model. Crispy banana was obtained at 140 degrees C-12min and 150 degrees C-15min in the HTST stage, with a(w) = 0.345 and a(w) = 0.363, respectively. Analysis of the k parameter (Lewis model) suggests that the initial moisture content of the samples effects this parameter, overcoming the HTST effect. Results showed a relationship between sensory crispness, instrumental texture and the HTST stage.22228529

    Valorization of sugarcane bagasse ash (SCBA) with high quartz content as pozzolanic material in portland cement mixtures

    Get PDF
    [EN] Portland cement (OPC) production is one of the most contaminating greenhouse gas producing activities. In order to reduce OPC consumption, several alternatives are being assessed, and the use of pozzolanic material is one of them. This paper presents study on the reactivity of sugarcane bagasse ash (SCBA), a residue from sugarcane industry, as a pozzolanic material. In order to evaluate SCBA reactivity, it was mixed in pastes with hydrated lime and OPC, which were microstructurally characterised. These studies showed that SCBA presents some pozzolanic characteristics. Studies on mortars in which OPC was replaced by SCBA in the range 10¿30% were also carried out. Replacement in the range 15¿20% yielded the best behaviour in terms of compressive strength. Finally, it can be concluded this ash could be valorised despite its relative low pozzolanic reactivity.[ES] Valorización de la ceniza de bagazo de azúcar (SCBA) con alto contenido de cuarzo como material puzolánico en mezclas de cemento Portland. La producción de cemento Portland (OPC) presenta una elevada emisión de CO2. Con el objeto de reducir el consumo de OPC, se están evaluando algunas alternativas, y el uso de materiales puzolánicos es una de ellas. En este trabajo se presenta el estudio de la reactividad de la ceniza de bagazo de caña de azúcar (SCBA) como material puzolánico, un residuo procedente de la industria de la caña de azúcar. Al objeto de evaluar la reactividad de SCBA, se realizaron pastas con cal hidratada y con OPC, las cuales fueron caracterizadas microestructuralmente. Estos estudios mostraron que SCBA presenta una cierta característica puzolánica. Se llevaron a cabo estudios en morteros en los que OPC se sustituyó por SCBA en el intervalo de 10-30%. La sustitución en el intervalo 15-20% produjo el mejor comportamiento en términos de resistencia a compresión. Finalmente, se puede concluir que esta ceniza puede ser valorizada a pesar de su baja reactividad puzolánica.The authors would like to thank the Ministerio de Educacion, Cultura y Deporte of Spain (Cooperacion Interuniversitaria Program with Brazil, Project PHB-2011-0016-PC), CAPES-Brazil (Project CAPES/DGU No. 266/12), CNPq (Project 401724/2013-1) and Electron Microscopy Service of the Universitat Politecnica de Valencia.Pereira, A.; Moraes, J.; Bassan De Moraes, M.; Akasaki, J.; Tashima, M.; Soriano Martinez, L.; Monzó Balbuena, JM.... (2018). Valorization of sugarcane bagasse ash (SCBA) with high quartz content as pozzolanic material in portland cement mixtures. Materiales de Construcción. 68(330):153-163. https://doi.org/10.3989/mc.2018.00617S153163683301. World cement production. CEMBUREAU – The European Cement Association Website; https://cembureau.eu/media/1503/2015activityreport_cembureau.pdf2. Guo, X.; Shi, H.; Dick, W.A. (2010) Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cem. Concr. Compos. 32, 142–7.3. Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties, and Materials. 3rd ed. New York: McGraw- Hill, (2006).4. Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z. (2016) Structural performance of reinforced geopolymer concrete members: A review, Constr. Build. Mater. 120, 251-264.5. Sharp, J.H.; Gartner, E.M.; Macphee, D.E. (2010) Novel cement system (sustainability). Session 2 of the Fred Glasser cement science symposium. Adv. Cem. Res. 22(4), 195–202.6. BS EN 197-1. Cement – Part 1: Composition, specifications and conformity criteria for common cements. London: European Committee For Standardisation; (2011).7. Siddique, R.; Khan, M.I. Supplementary Cementing Materials. 1st ed. Berlin: Springer, (2011).8. Siddique, R. Waste Material and By-Products in Concrete. 1st ed. Berlin: Springer, (2008).9. Küçükyıldırım, E.; Uzal, B. (2014) Characteristics of calcined natural zeolites for use in high-performance pozzolan blended cements. Constr. Build. Mater. 73, 229–34.10. Tashima, M.M.; Soriano, L.; Monzó, J.; Borrachero, M.V.; Akasaki, J.L.; Payá, J. (2014) New method to assessthe pozzolanic reactivity of mineral admixtures by means pH and electrical conductivity measurementsin lime:pozzolan suspensions. Mater. Construc. 64 [316], e032.11. Wongkeo, W.; Thongsanitgarn, P.; Chaipanich, A. (2012) Compressive strength and drying shrinkage of fly ash-bottom ash-silica fume multi-blended cement mortars. Mater. Des. 36, 655-62.12. Lee, C.L.; Huang, R.; Lin, W.T.; Weng, T.L. (2012) Establishment of the durability indices for cement-based composite containing supplementary cementitious materials. Mater. Des. 37, 28-39.13. Sinsiri, T.; Kroenhong, W.; Jaturapitakkul, C.; Chindaprasirt, P. (2012) Assessing the effect of biomass ashes with different finenesses on the compressive strength of blended cement paste. Mater. Des. 42, 424-33.14. Pereira, C.L.; Savastano Jr., H.; Payá, J.; Santos, S.F.; Borrachero, M.V.; Monzó, J. (2013) Use of highly reactive rice husk ash in the production of cement matrix reinforced with green coconut fiber. Ind. Crop. Prod. 49, 88–96.15. Paiva, H.; Velosa, A.; Cachim, P.; Ferreira, V.M. (2016) Effect of pozzolans with diferent physical and chemical characteristics on concrete properties. Mater. Construc. 66 [322], 1-12. 516. Hoi, L.W.S.; Martincigh, B.S. (2013) Sugar cane plant fibres: Separation and characterization. Ind. Crop. Prod. 47, 1–12.17. Hugot, E. Handbook of Cane Sugar Engineering. 3rd ed. Amsterdam:Elsevier Science Publishers, (1986).18. Sugarcane production. FAOSTAT – Food and Agriculture Organisation of the United Nations, Statistics Division; http://www.fao.org/faostat/en/#data/QC19. Sugarcane production. UNICA – União da Indústria de Cana-de-Açúcar Website; http://www.unicadata.com. br/index.php?idioma=220. A Geração Termoelétrica com a Queima do Bagaço de Cana-de-Açúcar no Brasil. CONAB – Companhia Nacional de Abastecimento; http://www.agricultura.gov.br/assuntos/sustentabilidade/agroenergia/arquivos-termoeletrica-com-a-queima-do-bagaco-de-cana-de-acucar/termoeletrica-com-a-queima-do-bagaco-de-cana-de-acucar-no-brasil-safra-2009-2010.pdf21. Cortez, L.A.B.; Gómez, E.O. (1998) A method for exergy analysis of sugarcane bagasse boilers. Braz. J. Chem. Eng. 15 [1].22. Souza, A.E.; Teixeira, S.R.; Santos, G.T.A.; Costa, F.B.; Longo, E. (2011) Reuse of sugarcane bagasse ash (SCBA) to produce ceramic materials. J. Environ. Manage. 92, 2774–80.23. Hofsetz, K.; Silva, M.A. (2012) Brazilian sugarcane bagasse: Energy and non-energy consumption. Biomass Bioenerg 46, 564–573.24. Cordeiro, G.C.; Toledo Filho, R.D.; Tavares, L.M.; Fairbairn, E.M.R. (2009) Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem. Concr. Res. 39, 110–115.25. Frías, M.; Villar, E.; Savastano, H. (2011) Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cem. Concr. Compos. 33, 490–496.26. Fairbairn, E.M.R.; Americano, B.B.; Cordeiro, G.C.; Paula, T.P.; Toledo Filho, R.D.; Silvoso, M.M. (2010) Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits. J. Environ. Manage. 91, 1864–1871.27. Cordeiro, G.C.; Toledo Filho, R.D.; Fairbairn, E.M.R. (2009) Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Constr. Build. Mater. 23, 3301–3303.27. UNE-EN 196-5. Método de ensayo de cementos. Parte 5: Ensayo de puzolanicidad para los cementos puzolánicos. Madrid: Asociación Espa-ola de Normalización y Certificación – AENOR; (2011).29. NBR 7215. Cimento Portland – Determinação da resistência à compressão. Rio de Janeiro: Associação Brasileira de Normas Técnicas – ANBT; (1996).29. ASTM C-618. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. Philadelphia: ASTM International; (2005).31. Allahverdi, A.; Shaverdi, B.; Kani, E. (2010) Influence of sodium oxide on properties of fresh and hardened paste of alkali-activated blast-furnace slag. Int. J. Civ. Eng. 8, 304–314.32. Yu, P.; Kirkpatrick, R.J.; Poe, B.; McMillan, P.F.; Cong, X. (1999) Structure of calcium silicate hydrate (C-S-H): Near-, mid-, and far-infrared spectroscopy. J. Am. Ceram. Soc. 82(3), 742–748.33. Moraes, J.C.B.; Akasaki, J.L.; Melges, J.L.P.; Monzó, J.; Borrachero, M.V.; Soriano, L.; Payá, J.; Tashima, M.M. (2015) Assessment of sugar cane straw ash (SCSA) as pozzolanic material in blended Portland cement: Microstructural characterisation of pastes and mechanical strength of mortars. Constr. Build. Mater. 94, 670–677.34. Murat, M. (1983) Hydration reaction and hardening of calcined clays and related minerals: II. Influence of mineralogical properties of raw-kaolinite on the reactivity of metakaolinite. Cem. Concr. Res. 11, 511–518.35. Serry, M.A.; Taha, A.S.; El-Hemaly, S.A.S.; El-Didamony, H. (1984) Metakaolin-lime hydration products. Thermochim. Acta 79, 103–110.36. Lorca, P.; Calabuig, R.; Benlloch, J.; Soriano, L.; Payá, J. (2014) Microconcrete with partial replacement of Portland cement by fly ash and hydrated lime addition. Mater. Des. 64, 535–541

    Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept

    Get PDF
    In search to increase the offer of liquid, clean, renewable and sustainable energy in the world energy matrix, the use of lignocellulosic materials (LCMs) for bioethanol production arises as a valuable alternative. The objective of this work was to analyze and compare the performance of Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis in the production of bioethanol from coconut fibre mature (CFM) using different strategies: simultaneous saccharification and fermentation (SSF) and semi-simultaneous saccharification and fermentation (SSSF). The CFM was pretreated by hydrothermal pretreatment catalyzed with sodium hydroxide (HPCSH). The pretreated CFM was characterized by X-ray diffractometry and SEM, and the lignin recovered in the liquid phase by FTIR and TGA. After the HPCSH pretreatment (2.5% (v/v) sodium hydroxide at 180 °C for 30 min), the cellulose content was 56.44%, while the hemicellulose and lignin were reduced 69.04% and 89.13%, respectively. Following pretreatment, the obtained cellulosic fraction was submitted to SSF and SSSF. Pichia stipitis allowed for the highest ethanol yield 90.18% in SSSF, 91.17% and 91.03% were obtained with Saccharomyces cerevisiae and Zymomonas mobilis, respectively. It may be concluded that the selection of the most efficient microorganism for the obtention of high bioethanol production yields from cellulose pretreated by HPCSH depends on the operational strategy used and this pretreatment is an interesting alternative for add value of coconut fibre mature compounds (lignin, phenolics) being in accordance with the biorefinery concept.Brazilian research funding agencies CNPq (Proc:470356/2011-1) and CAPES (Proc:BEX5951/11-9) for financial suppor

    Study of the binary system fly ash/sugarcane bagasse ash (FA/SCBA) in SiO2/K2O alkali-activated binders

    Full text link
    Due environmental problems related to Portland cement consumption, many studies have been performed to diminish its use. One solution is the development of alkali-activated binders, which can decrease CO2 emissions and energy consumption by 70% when compared to Portland cement production. In addition, an alkali-activated binder presents mechanical properties similar to Portland cement mixtures, which turns into an interesting material in civil construction. Aluminosilicate-based materials are important raw materials to produce the alkali-activated binders. Therefore, two residues are presented as an aluminosilicate source in this study: fly ash (FA) and sugarcane bagasse ash (SCBA). Both residues were obtained from a combustion process to generate energy, the former from coal and the latter from the bagasse of the sugarcane industry. In addition, the alkaline activating solution is an important factor to achieve improved mechanical properties. In this context, this study investigated the influence of four different SiO2/K2O molar ratios (0, 0.36, 0.75 and 1.22) in the activating solution with a constant water content, and three FA/SCBA binder proportions (75/25, 50/50 and 25/75). Microstructural characterization was carried out by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, mercury intrusion porosimetry, pH and electrical conductivity measurements to study the evolution of the reaction process. The compressive strength of mortars was assessed in order to determine the optimum SiO2/K2O molar ratio and FA/SCBA ratio. The tests showed that a SiO2/K2O molar ratio of 0.75 and FA/SCBA proportion of 75/25 provided the best mechanical properties.The authors would like to thank the Ministerio de Educacion, Cultura y Deporte of Spain (Cooperacion Interuniversitaria program with Brazil, Project PHB-2011-0016-PC), CAPES Brazil (Project CAPES/DGU No. 266/12) and CNPq (process no 401724/2013-1).Castaldelli, V.; Moraes, J.; Akasaki, JL.; Pinheiro Melges, JL.; Monzó Balbuena, JM.; Borrachero Rosado, MV.; Soriano Martínez, L.... (2016). Study of the binary system fly ash/sugarcane bagasse ash (FA/SCBA) in SiO2/K2O alkali-activated binders. Fuel. 174:307-316. https://doi.org/10.1016/j.fuel.2016.02.020S30731617
    • …
    corecore