21,767 research outputs found

    Glass transition of binary mixtures of dipolar particles in two dimensions

    Full text link
    We study the glass transition of binary mixtures of dipolar particles in two dimensions within the framework of mode-coupling theory, focusing in particular on the influence of composition changes. In a first step, we demonstrate that the experimental system of K\"onig et al. [Eur. Phys. J. E 18, 287 (2005)] is well described by point dipoles through a comparison between the experimental partial structure factors and those from our Monte Carlo simulation. For such a mixture of point particles we show that there is always a plasticization effect, i.e. a stabilization of the liquid state due to mixing, in contrast to binary hard disks. We demonstrate that the predicted plasticization effect is in qualitative agreement with experimental results. Furthermore, also some general properties of the glass transition lines are discussed.Comment: 12 pages, 8 figures, J. Non-Cryst. Solids (in print

    Regulation and Function of the Caspase-1 in an Inflammatory Microenvironment.

    Get PDF
    The inflammasome is a complex of proteins that has a critical role in mounting an inflammatory response in reply to a harmful stimulus that compromises the homeostatic state of the tissue. The NLRP3 inflammasome, which is found in a wound-like environment, is comprised of three components: the NLRP3, the adaptor protein ASC and caspase-1. Interestingly, although ASC levels do not fluctuate, caspase-1 levels are elevated in both physiological and pathological conditions. Despite the observation that merely raising caspase-1 levels is sufficient to induce inflammation, the crucial question regarding the mechanism governing its expression is unexplored. We found that, in an inflammatory microenvironment, caspase-1 is regulated by NF-κB. Consistent with this association, the inhibition of caspase-1 activity parallels the effects on wound healing caused by the abrogation of NF-κB activation. Surprisingly, not only does inhibition of the NF-κB/caspase-1 axis disrupt the inflammatory phase of the wound-healing program, but it also impairs the stimulation of cutaneous epithelial stem cells of the proliferative phase. These data provide a mechanistic basis for the complex interplay between different phases of the wound-healing response in which the downstream signaling activity of immune cells can kindle the amplification of local stem cells to advance tissue repair

    Fast Frictionless Expansion of an Optical Lattice

    Full text link
    We investigate fast frictionless expansion of an optical lattice with dynamically variable spacing (accordion lattice). We design an expansion trajectory that yields a final state identical to the initial state up to an irrelevant phase factor. We discuss the effect of additional force and nonlinear interaction on the fast frictionless expansion.Comment: To be published in PL

    Portfolio-based Planning: State of the Art, Common Practice and Open Challenges

    Get PDF
    In recent years the field of automated planning has significantly advanced and several powerful domain-independent planners have been developed. However, none of these systems clearly outperforms all the others in every known benchmark domain. This observation motivated the idea of configuring and exploiting a portfolio of planners to perform better than any individual planner: some recent planning systems based on this idea achieved significantly good results in experimental analysis and International Planning Competitions. Such results let us suppose that future challenges of the Automated Planning community will converge on designing different approaches for combining existing planning algorithms. This paper reviews existing techniques and provides an exhaustive guide to portfolio-based planning. In addition, the paper outlines open issues of existing approaches and highlights possible future evolution of these techniques

    Heart failure and sudden cardiac death in heritable thoracic aortic disease caused by pathogenic variants in the SMAD3 gene

    Get PDF
    Background: Predominant cardiovascular manifestations in the spectrum of Heritable Thoracic Aortic Disease include by default aortic root aneurysms- and dissections, which may be associated with aortic valve disease. Mitral- and tricuspid valve prolapse are other commonly recognized features. Myocardial disease, characterized by heart failure and/or malignant arrhythmias has been reported in humans and in animal models harboring pathogenic variants in the Fibrillin1 gene. Methods: Description of clinical history of three cases from one family in Ghent (Belgium) and one family in St. Louis (US). Results: We report on three cases from two families presenting end-stage heart failure (in two) and lethal arrhythmias associated with moderate left ventricular dilatation (in one). All three cases harbor a pathogenic variant in the SMAD3 gene, known to cause aneurysm osteoarthritis syndrome, Loeys-Dietz syndrome type 3 or isolated Heritable Thoracic Aortic Disease. Conclusions: These unusual presentations warrant awareness for myocardial disease in patients harboring pathogenic variants in genes causing Heritable Thoracic Aortic Disease and indicate the need for prospective studies in larger cohorts

    The diverse constructs use of activities of daily living measures in stroke randomized controlled trials in the years 2005–2009

    Get PDF
    Objective: To explore construct(s) (ability, capability, actual performance, and/or perceived difficulty) of activities of daily living measures that have been used in randomized controlled trials

    The diverse constructs use of activities of daily living measures in stroke randomized controlled trials in the years 2005–2009

    Get PDF
    Objective: To explore construct(s) (ability, capability, actual performance, and/or perceived difficulty) of activities of daily living measures that have been used in randomized controlled trials

    Structure and magnetism of Cr2BP3O12: Towards the quantum-classical crossover in a spin-3/2 alternating chain

    Full text link
    Magnetic properties of the spin-3/2 Heisenberg system Cr2BP3O12 are investigated by magnetic susceptibility chi(T) measurements, electron spin resonance, neutron diffraction, and density functional theory (DFT) calculations, as well as classical and quantum Monte Carlo (MC) simulations. The broad maximum of chi(T) at 85K and the antiferromagnetic Weiss temperature of 139 K indicate low-dimensional magnetic behavior. Below TN = 28 K, Cr2BP3O12 is antiferromagnetically ordered with the k = 0 propagation vector and an ordered moment of 2.5 muB/Cr. DFT calculations, including DFT+U and hybrid functionals, yield a microscopic model of spin chains with alternating nearest-neighbor couplings J1 and J1' . The chains are coupled by two inequivalent interchain exchanges of similar strength (~1-2 K), but different sign (antiferromagnetic and ferromagnetic). The resulting spin lattice is quasi-one-dimensional and not frustrated. Quantum MC simulations show excellent agreement with the experimental data for the parameters J1 ~= 50 K and J1'/J1 ~= 0.5. Therefore, Cr2BP3O12 is close to the gapless critical point (J1'/J1 = 0.41) of the spin-3/2 bond-alternating Heisenberg chain. The applicability limits of the classical approximation are addressed by quantum and classical MC simulations. Implications for a wide range of low-dimensional S = 3/2 materials are discussed.Comment: Published version: 13 pages, 7 figures, 5 tables + Supplementary informatio

    Diacetylene bridged triphenylamines as hole transport materials for solid state dye sensitized solar cells

    Get PDF
    We have synthesized and characterized a series of triphenylamine-based hole-transport materials (HTMs), and studied their function in solid-state dye sensitized solar cells (ss-DSSCs). By increasing the electron-donating strength of functional groups (-H < -Me < -SMe < -OMe) we have systematically shifted the oxidation potential and ensuing photocurrent generation and open-circuit voltage of the solar cells. Correlating the electronic properties of the HTM to the device operation highlights a significant energy offset required between the Dye-HTM highest occupied molecular orbital (HOMO) energy levels. From this study, it is apparent that precise control and tuning of the oxidation potential is a necessity, and usually not achieved with most HTMs developed to date for ss-DSSCs. To significantly increase the efficiency of solid-state DSSCs understanding these properties, and implementing dye-HTM combinations to minimize the required HOMO offset is of central importance. © 2013 The Royal Society of Chemistry
    corecore