2,768 research outputs found
Theory of internal relaxation in chemical kinetics
Master equation derived and applied to problems of internal vibrational relaxation and intramolecular rearrangement reaction
Issues associated with telerobotic systems in space
Research issues in using telerobotics in space are discussed. Included is a review of previous research in space telerobotics and the results of several telerobotics experiments
Analytical description of finite size effects for RNA secondary structures
The ensemble of RNA secondary structures of uniform sequences is studied
analytically. We calculate the partition function for very long sequences and
discuss how the cross-over length, beyond which asymptotic scaling laws apply,
depends on thermodynamic parameters. For realistic choices of parameters this
length can be much longer than natural RNA molecules. This has to be taken into
account when applying asymptotic theory to interpret experiments or numerical
results.Comment: 10 pages, 13 figures, published in Phys. Rev.
Qualification Tests of 474 Photomultiplier Tubes for the Inner Detector of the Double Chooz Experiment
The hemispherical 10" photomultiplier tube (PMT) R7081 from Hamamatsu
Photonics K.K. (HPK) is used in various experiments in particle and
astroparticle physics. We describe the test and calibration of 474 PMTs for the
reactor antineutrino experiment Double Chooz. The unique test setup at
Max-Planck-Institut f\"ur Kernphysik Heidelberg (MPIK) allows one to calibrate
30 PMTs simultaneously and to characterize the single photo electron response,
transit time spread, linear behaviour and saturation effects, photon detection
efficiency and high voltage calibration
The Effect of Recombination on the Neutral Evolution of Genetic Robustness
Conventional population genetics considers the evolution of a limited number
of genotypes corresponding to phenotypes with different fitness. As model
phenotypes, in particular RNA secondary structure, have become computationally
tractable, however, it has become apparent that the context dependent effect of
mutations and the many-to-one nature inherent in these genotype-phenotype maps
can have fundamental evolutionary consequences. It has previously been
demonstrated that populations of genotypes evolving on the neutral networks
corresponding to all genotypes with the same secondary structure only through
neutral mutations can evolve mutational robustness [Nimwegen {\it et al.}
Neutral evolution of mutational robustness, 1999 PNAS], by concentrating the
population on regions of high neutrality. Introducing recombination we
demonstrate, through numerically calculating the stationary distribution of an
infinite population on ensembles of random neutral networks that mutational
robustness is significantly enhanced and further that the magnitude of this
enhancement is sensitive to details of the neutral network topology. Through
the simulation of finite populations of genotypes evolving on random neutral
networks and a scaled down microRNA neutral network, we show that even in
finite populations recombination will still act to focus the population on
regions of locally high neutrality.Comment: Accepted for publication in Math. Biosci. as part of the proceedings
of BIOCOMP 200
Funnels in Energy Landscapes
Local minima and the saddle points separating them in the energy landscape
are known to dominate the dynamics of biopolymer folding. Here we introduce a
notion of a "folding funnel" that is concisely defined in terms of energy
minima and saddle points, while at the same time conforming to a notion of a
"folding funnel" as it is discussed in the protein folding literature.Comment: 6 pages, 3 figures, submitted to European Conference on Complex
Systems 200
A phase-field model for cohesive fracture
In this paper, a phase-field model for cohesive fracture is developed. After casting the cohesive zone approach in an energetic framework, which is suitable for incorporation in phase-field approaches, the phase-field approach to brittle fracture is recapitulated. The approximation to the Dirac function is discussed with particular emphasis on the Dirichlet boundary conditions that arise in the phase-field approximation. The accuracy of the discretisation of the phase field, including the sensitivity to the parameter that balances the field and the boundary contributions, is assessed at the hand of a simple example. The relation to gradient-enhanced damage models is highlighted, and some comments on the similarities and the differences between phase-field approaches to fracture and gradient-damage models are made. A phase-field representation for cohesive fracture is elaborated, starting from the aforementioned energetic framework. The strong as well as the weak formats are presented, the latter being the starting point for the ensuing finite element discretisation, which involves three fields: the displacement field, an auxiliary field that represents the jump in the displacement across the crack, and the phase field. Compared to phase-field approaches for brittle fracture, the modelling of the jump of the displacement across the crack is a complication, and the current work provides evidence that an additional constraint has to be provided in the sense that the auxiliary field must be constant in the direction orthogonal to the crack. The sensitivity of the results with respect to the numerical parameter needed to enforce this constraint is investigated, as well as how the results depend on the orders of the discretisation of the three fields. Finally, examples are given that demonstrate grid insensitivity for adhesive and for cohesive failure, the latter example being somewhat limited because only straight crack propagation is considered
RNA denaturation: excluded volume, pseudoknots and transition scenarios
A lattice model of RNA denaturation which fully accounts for the excluded
volume effects among nucleotides is proposed. A numerical study shows that
interactions forming pseudoknots must be included in order to get a sharp
continuous transition. Otherwise a smooth crossover occurs from the swollen
linear polymer behavior to highly ramified, almost compact conformations with
secondary structures. In the latter scenario, which is appropriate when these
structures are much more stable than pseudoknot links, probability
distributions for the lengths of both loops and main branches obey scaling with
nonclassical exponents.Comment: 4 pages 3 figure
Detection of microRNAs in color space
MotivationDeep sequencing provides inexpensive opportunities to characterize the transcriptional diversity of known genomes. The AB SOLiD technology generates millions of short sequencing reads in color-space; that is, the raw data is a sequence of colors, where each color represents 2 nt and each nucleotide is represented by two consecutive colors. This strategy is purported to have several advantages, including increased ability to distinguish sequencing errors from polymorphisms. Several programs have been developed to map short reads to genomes in color space. However, a number of previously unexplored technical issues arise when using SOLiD technology to characterize microRNAs.ResultsHere we explore these technical difficulties. First, since the sequenced reads are longer than the biological sequences, every read is expected to contain linker fragments. The color-calling error rate increases toward the 3(') end of the read such that recognizing the linker sequence for removal becomes problematic. Second, mapping in color space may lead to the loss of the first nucleotide of each read. We propose a sequential trimming and mapping approach to map small RNAs. Using our strategy, we reanalyze three published insect small RNA deep sequencing datasets and characterize 22 new microRNAs.Availability and implementationA bash shell script to perform the sequential trimming and mapping procedure, called SeqTrimMap, is available at: http://www.mirbase.org/tools/seqtrimmap/[email protected] informationSupplementary data are available at Bioinformatics online
Qualification Tests of 474 Photomultiplier Tubes for the Inner Detector of the Double Chooz Experiment
The hemispherical 10" photomultiplier tube (PMT) R7081 from Hamamatsu
Photonics K.K. (HPK) is used in various experiments in particle and
astroparticle physics. We describe the test and calibration of 474 PMTs for the
reactor antineutrino experiment Double Chooz. The unique test setup at
Max-Planck-Institut f\"ur Kernphysik Heidelberg (MPIK) allows one to calibrate
30 PMTs simultaneously and to characterize the single photo electron response,
transit time spread, linear behaviour and saturation effects, photon detection
efficiency and high voltage calibration
- …
