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ABSTRACT

Motivation: Deep sequencing provides inexpensive opportunities
to characterize the transcriptional diversity of known genomes. The
AB SOLiD technology generates millions of short sequencing reads
in color-space; that is, the raw data is a sequence of colors, where
each color represents 2 nt and each nucleotide is represented by
two consecutive colors. This strategy is purported to have several
advantages, including increased ability to distinguish sequencing
errors from polymorphisms. Several programs have been developed
to map short reads to genomes in color space. However, a number
of previously unexplored technical issues arise when using SOLiD
technology to characterize microRNAs.
Results: Here we explore these technical difficulties. First, since
the sequenced reads are longer than the biological sequences, every
read is expected to contain linker fragments. The color-calling error
rate increases toward the 3′ end of the read such that recognizing the
linker sequence for removal becomes problematic. Second, mapping
in color space may lead to the loss of the first nucleotide of each
read. We propose a sequential trimming and mapping approach to
map small RNAs. Using our strategy, we reanalyze three published
insect small RNA deep sequencing datasets and characterize 22 new
microRNAs.
Availability and implementation: A bash shell script to perform the
sequential trimming and mapping procedure, called SeqTrimMap, is
available at: http://www.mirbase.org/tools/seqtrimmap/
Contact: antonio.marco@manchester.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
So-called next-generation sequencing technologies, or deep
sequencing, permit the fast and comprehensive analysis of genomes
and transcriptomes (Mardis, 2008). The short length of the sequence
reads produced is compensated by the capacity to produce millions
of reads in a single run. Thus, new strategies to align and assemble
highly redundant short sequence reads have been developed over
the last few years (Flicek and Birney, 2009; Li and Homer, 2010).

MicroRNAs are endogenous RNA molecules, ∼22 nt in length
that repress gene translation (Bartel, 2004). In the past 4 years, the
overwhelming majority of novel microRNAs have been identified
by deep sequencing. Reads from deep sequencing experiments may
contain sequences of the short DNA adapters (termed ‘linkers’ here)
used in the sequencing reaction. Characterization of small RNAs
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from deep sequencing datasets requires the removal of these linker
sequences from the 3′ ends of reads. Illumina/Solexa sequencing has
been extensively used to detect microRNAs (Berezikov et al., 2011;
Morin et al., 2008; Ruby et al., 2007) and the available data suggest
that the 3′ linker sequences are easily detected and removed. For
instance, Ruby et al. (2007) detected 3′ linker fragments in >82%
of the sequenced reads by string matching.

The use of AB SOLiD sequencing to characterize microRNAs is
on the rise (Cai et al., 2010; Chen et al., 2010; Goff et al., 2009;
Li et al., 2010; Marco et al., 2010). Unlike other technologies,
SOLiD machines produce sequences in color space, each color
representing a dinucleotide. The rationale behind color space
is that, since colors are produced for overlapping dinucleotides
(Fig. 1A), each nucleotide is read twice. This is purported to
reduce sequencing errors, and to permit better distinction between
sequencing errors and polymorphisms (Applied Biosystems, 2008).
The characterization of microRNAs in color space produces two
specific issues that have so far been overlooked, one associated
with each end of the read. First, the read length is longer than
the biological sequence, such that the 3′ end of every read derived
from a microRNA contains linker sequence that must be removed.
However, detecting and removing adapter sequences in color space
is not as straightforward as in base space, as we explore in this work.
Second, the first color of each read represents the last base of the
adapter and the first of the target sequence. The treatment of this
color is controversial since different programs keep or remove it.
Removal of the first color causes the first base to be lost, whereas
retaining the first color may reduce the proportion of reads that map
to the genome. The loss of the 5′ nt has critical consequences in
the characterization of microRNAs. In this article, we address the
issues of using color space sequences to characterize microRNAs
and other small RNAs, and provide a simple strategy to easily map
color space reads from small RNA libraries to whole genomes.

2 METHODS

2.1 Linker fragments detection
To analyze the nature of the contaminant sequences within reads, we
explore the presence of linker fragments at 3′ ends in a Tribolium
adult library (GEO accession number: GSM639446). We used the
cutadapt tool (http://code.google.com/p/cutadapt/) to remove the linker
sequences used during the sequencing reaction (5′ linker: CCACTAC
GCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGAT; 3′ linker: CTGCC
CCGGGTTCCTCATTCTCTCATCGGCTGCTGTACGGCCAAGGCG). We
also mapped all adjacent 20 color length overlapping fragments within the
last 30 colors of each read against these linker sequences using Bowtie
(Langmead et al., 2009) allowing from 0 to 3 color mismatches.
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Fig. 1. Effects of color space encoding in the first nucleotide of sequenced reads. (A) cDNA sequences are linked to a P1 adapter. The first color produced is
determined by the first base of the read and the last of the adapter. If we remove the first color, the first base is lost during the color-to-base decoding. This
first base is kept if we do not remove the first color. (B) Effect of missing the first nucleotide (red) in sequencing long (fragmented) sequences. (C) Effect of
missing the first nucleotide in sequencing microRNAs.

2.2 Sequential trimming and mapping of reads
in color space

Sequence datasets were obtained from GEO (http://www.ncbi.nlm.nih.
gov/geo/) and SRA (http://www.ncbi.nlm.nih.gov/sra). For each dataset
(GEO:GSM639446; GEO:GSM639447; SRA:SRR039230), we mapped the
full-length reads, and then sequentially trimmed the last color of the reads
and repeated the mapping procedure for all previously unmapped reads,
to a minimum read length of 19 colors. At each mapping step, we first
removed reads that match a library of known rRNAs and tRNAs for the target
species. Ribosomal RNAs (rRNAs) in each target species were extracted
from the SILVA database (http://www.arb-silva.de/, release 108). Transfer
RNAs were detected in honeybee and beetle genomes using tRNAscan-
SE with default parameters (Lowe and Eddy, 1997). The remaining reads
were mapped against the reference genome sequence (Tribolium castaneum
version 3.0 and Apis mellifera version 4.0) with Bowtie (Langmead et al.,
2009) allowing two color mismatches (-v 2) and retaining all best matches
(-a --best --strata). We modified the input files to force Bowtie to keep the
first color of the reads by removing the first letter of each sequence in the
input file (B.Langmead, personal communication).

2.3 Detection of microRNAs
Reads mapped at color length 20–26 were used for microRNA detection.
Reads that map to >5 positions in the genome were removed. We grouped
overlapping reads and retrieved flanking regions (−50 to +100 and −100
to +50) from the target genomes. We scanned these genomic fragments
for hairpins using RNAfold (Hofacker et al., 1994). We applied a series
of filters to the resulting hairpins to detect putative microRNAs based on
Marco et al. (2010), with minor modifications to increase the stringency
of microRNA calls: (i) reads that were sequenced only once were removed
prior to microRNA detection; we subsequently require that (ii) at least 10
reads map to the putative arms of the predicted hairpins; (iii) the hairpin
folding energy is below −20 kcal/mol; (iv) at least 50% of the nucleotides
of one arm of the hairpin pair with nucleotides from the other arm; (v)
at least 70% of a minimum of five reads from one arm have the same 5′
end; (vi) putative mature sequences from both arms (so-called miR and
miR* sequences) are supported by reads, and the most abundant reads
from each arm pair in the predicted hairpin structure across at least 70%

of their length; (vii) where a read maps to multiple genomic loci, all
loci are annotated as microRNA candidates by criteria 1–6. MicroRNA
candidates were manually inspected and compared with previously annotated
microRNAs using BLAST (Altschul et al., 1997).

3 RESULTS AND DISCUSSION

3.1 Linker fragments in color space reads
Sequence reads often contain, in their 3′ end, fragments of the linker
used during the sequencing reaction. Moreover, when the biological
sequences of interest are shorter than the read length, we expect that
most reads contain linker sequences. Linkers are typically removed
by filtering out 3′ ends that match with known linker sequences.
However, in the particular case of SOLiD reads this is problematic.
AB SOLiD machines (versions 3 and 4) produce 50 nt long reads.
The sequencing error rate rapidly increases toward the 3′ end of the
read (Sasson and Michael, 2010). We can estimate the proportion of
linker sequences at the 3′ end of the read that contain no sequencing
errors. Let ei be the color call error rate at position i of the read.
Then, the proportion of reads with no errors at position i is (1−ei).
Hence, the proportion (P) of reads with no errors at their 3′ end is:

P=
R∏

R−r+1

(
1−ei

)
(1)

where R is the length of the read and r the length of the 3′
end fragment we are testing. Using the error rates described for
Escherichia coli re-sequencing data in Sasson and Michael (2010),
and assuming that the linker accounts for half of the read (25 nt),
we estimate that the percentage of reads with no errors in the
linker sequence is ∼43%. That means that we could not detect
linker fragments in more than half of the reads by simple sequence
matching. Moreover, linker fragments can have multiple sequencing
errors. Assuming a fixed error rate of 0.033 [average for the last 25 nt
of the reads according to Sasson and Michael (2010)], and using the
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Table 1. Linker fragments detected at 3′ end of sequenced reads using
Bowtie

Color Reads matching 3′ Reads matching 5′
mismatches linkers (%) linkers (%)

0 15 540 742 (23.17) 1827 (0.00)
1 24 626 724 (36.72) 2745 (0.00)
2 31 983 586 (47.69) 3815 (0.01)
3 38 392 776 (57.24) 5775 (0.01)

binomial distribution, the expected percentage of sequences with at
least 2 errors is 20%, and for 3 or more errors is ∼5%. Additionally,
>90% of the mature microRNAs registered in miRBase (Kozomara
and Griffiths-Jones, 2011) are <25 nt. Hence, these values are likely
to be underestimates of the real impact of errors in the 3′ ends of
the SOLiD small RNA sequencing reads.

We further explored whether the 3′ end sequences are actually
linkers in SOLiD small RNA datasets. We scanned sequence reads
from a small RNA library from T.castaneum for known 3′ linkers
used during the sequencing process using Bowtie (see Section 2.1 for
details). We find that ∼23% of reads contain linker fragments with
zero mismatches. As we increase the number of color mismatches
to 3, we detect linker sequences in up to 57% of the reads (Table 1).
As a control, we also mapped against the 5′ linker (P1 adapter)
used during the sequencing reaction. As expected, we find virtually
no 5′ linker fragments at the 3′ ends of the reads (Table 1). These
data suggest that the number of errors in the 3′ linker sequence is
higher than that predicted by our model, such that we miss bona
fide linker fragments. Another possibility is that many reads are
chimeric artifacts of small RNAs and other fragments of transcripts.
As expected, when we directly remove linkers using the cutadapt
tool (see Section 2.1), only 2741 linker sequences are removed,
and the number of reads that can be subsequently mapped to
the genome is very low (Supplementary Material). Altogether, we
conclude that directly filtering for linker sequence is not productive
for SOLiD data.

To deal with 3′ end linker sequences of variable length, we
propose a strategy based on sequential trimming and mapping.
This type of strategy is appropriate for contaminant fragments of
unknown length and undetectable origin (Cloonan et al., 2009;
Marco et al., 2010). The procedure is as follows. First, we map all
reads to a reference genome in color space using Bowtie (Langmead
et al., 2009). We trim the last color of only the unmapped reads
and repeat the mapping. We sequentially trim one color and re-
map, to a minimum read length in our case of 19 colors. Bowtie
is particularly amenable to this approach for two main reasons:
its speed allows multiple rounds of mapping, and the ’--un’ option
allows easy access to the unmapped reads at each stage. Bowtie is,
however, less sensitive to reads with multiple mismatches (David
et al., 2011), although this is not a major consideration for microRNA
analysis. Bowtie decodes colors to nucleotides using the dynamic
programming approach described in (Li and Durbin, 2009); as a
consequence, the length of the decoded sequence will be 1 nt shorter
than the length in colors of the read. That is, if we trim sequences to
a minimum of 20 colors, the minimum nucleotide length will be 19.

We note that RNA2MAP (Applied Biosystems, 2009), the
program provided by AB SOLiD, deals with the linker issue in a

different way, but using the same principle that we cannot directly
remove linker fragments in color space. RNA2MAP maps the
reads from 5′ to 3′ by extending an initial aligned seed. During
the process, the reads are mapped against ‘hypothetical reads’
(concatenating genome fragments and linker sequences) in order
to detect contaminants (Applied Biosystems, 2009). We compare
the two approaches in a later section. RNA2MAP does not prefilter
sequences based on quality values. The rationale behind this is that
mapping in color space allows the easy identification of errors in
color calls. Likewise, we did not prefilter the datasets analyzed in this
work. However, we note that a prefiltering step significantly reduces
the computational complexity of mapping, with a small impact on
sensitivity for microRNA detection (Supplementary Material). This
confirms that our mapping approach is also robust to low-quality
sequences.

3.2 Mapping the first color of the read
The first color of a read from the SOLiD output is determined by the
last nucleotide of the P1 adapter linker and the first nucleotide of the
actual read (Fig. 1A). Some mapping algorithms, including Bowtie,
remove the first color before mapping, as only half of the information
in the first color derives from the sequenced molecule. In this case,
during the color-to-base decoding step we lose the first nucleotide
of the actual read (Fig. 1A). This may have little or no effect when
mapping overlapping reads from a longer transcript (Fig. 1B), but
when we map small processed RNAs, we will wrongly detect the
beginning of the functional sequences (Fig. 1C). Indeed, the correct
definition of the 5′ end of the microRNA is critical for functional
analysis. Other programs, such as SHRIMP (Rumble et al., 2009)
and BFAST (Homer et al., 2009), keep the first color of the read
during the mapping process. We propose keeping this first color but
allowing an extra color mismatch to account for the 0.75 probability
that the first base encoded in the color (the last base of the 5′ linker)
does not match the 5′ flanking base in the genome.

Keeping this first color has an important consequence in the
mapping of reads. Since we retrieve all ‘best’ mapping positions,
reads mapping equally well to multiple genome sites may be
artificially differentiated by score based on the matching of the
5′ end color. For instance, sequence 0132012 will map better to
0132012 than to 1132012. However, both sequences may map
equally well to both positions in base space. On the other hand,
if we remove the first color, an alternative problem arises: a read
that is unique in the genome may map to many places because
the first nucleotide is not taken into account. Bowtie has a new
native option to keep the first and last color of the reads but ignore
color mismatches in those positions. We reanalyzed the honeybee
data using this option. We find that the number of matches per
read increases, suggesting a reduction in mapping specificity. The
number of microRNAs detected by the downstream analysis falls
slightly, suggesting our strategy outperforms the Bowtie option. We,
therefore, recommend that the first color is retained for the purpose
of microRNA detection. We also suggest that candidate microRNAs
detected by deep sequencing (which will likely number only in the
hundreds) should be independently mapped to the reference genome,
using for example BLAST (Altschul et al., 1997), in order to detect
potential copies that escaped our mapping procedure. However, in
our experience, this bias is negligible.
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Table 2. Reads mapped with the sequential trimming and mapping strategy

Experiment Description Total reads Mapped reads Small RNA set Expected FP in
(%) (19–25 nt) (%) small RNAs (%)

GEO:GSM639446 Tribolium adult RNA library 67 070 132 45 838 144 (68.34) 21 547 990 (32.13) 39 267 (0.06)
GEO:GSM639447 Tribolium embryo RNA library 52 620 004 30 382 986 (57.74) 14 120 332 (26.83) 35 162 (0.07)
SRA:SRR039230 Apis RNA library 36 796 459 28 909 134 (78.57) 15 204 339 (41.32) 19 059 (0.05)

3.3 Efficient mapping of color space reads
We implemented our integrated sequential trimming and mapping
strategy in a simple script (see Section 2.2). This script maps reads
using Bowtie, but it modifies the input file so that Bowtie keeps
the first color of the read. We have used this approach to reanalyse
three published SOLiD datasets. We first consider two T.castaneum
RNA libraries from adult and embryos, sequenced in our laboratory
(Marco et al., 2010). In our previous analyses, we first converted
colors to bases directly, and mapped the sequences in base space.
We obtained mapping rates to the reference genome of only ∼13% of
the adult reads and <4% of the embryonic reads (Marco et al., 2010).
When we applied the strategy described here, we mapped ∼68 and
58% for adults and embryos, respectively (Table 2). The direct
conversion from color to base space produces a high proportion
of artifactual sequences (because a single color mismatch causes
errors in every downstream base of the converted sequence). This is
the primary explanation for the low number of reads mapped in our
previous analyses. We also analyzed a third-party RNA library from
honeybee (Chen et al., 2010). In this case, we successfully mapped
79% of the reads. Since our interest is in detecting microRNAs, we
consider further only reads mapped at color length 20–26. These
sequences account for a large proportion of the total (∼41%).

We estimated the number of expected false positive mappings
that passed our criteria. Calculating the frequency of a given word
in a genome is a known problem that often requires the use of
distribution approximations (Robin and Schbath, 2001). We used
a simpler approach to estimate the number of reads that map by
chance to the genome, assuming no sequence bias composition and
no effect of overlapping words. Consider the probability that a read
maps at exactly one position in the genome by chance, that is a
function of the number of mapping positions (approximately the
length of the genome, L, multiplied by the number of colors) and
the number of potential different sequences (4l , where l is the read
length). Hence, the average number of sequences mapped by chance
to the genome in 5 or fewer sites (since we discarded reads mapping
to >5 positions in our analysis), M, is given by:

M ≈N
5∑

i=1

[
4L

4l

]i
(2)

where N is the number of sequences to be mapped in each step. As
shown in Table 2, the number of expected false positives (expected
number of sequences mapped by chance) is, in all cases, <0.1%.

Chen et al. (2010) used RNA2MAP to analyze their honeybee
dataset. RNA2MAP first maps the reads to known microRNAs at
miRBase, and the remaining reads are mapped against the reference
genome. In order to compare our results with those published
previously, we followed a similar approach with our pipeline. When

mapping to previously known microRNAs, we observed that both
mapping strategies yielded similar results (Fig. 2A). However, we
observed that for some microRNAs we map many more sequences
than RNA2MAP. For example, the authors detected 546 reads that
map to mir-1, while our strategy successfully mapped >300 000
sequences. We note that there are two identical copies of mir-
1 in the honeybee genome: ame-mir-1-1 and ame-mir-1-2. We
also map many more reads than the previous study for other
multiple copy sequences, for example mir-92b and mir-87 (Fig.
2A). It is important to keep reads with multiple matches in the
genome, since they may map to real microRNAs. Additionally, our
sequential trimming strategy clearly outperforms RNA2MAP-based
mapping when mapping into the reference genome (Fig. 2B). We
conclude that the ability of Bowtie to deal with multiple mapped
reads outperforms that of RNA2MAP, and our sequential trimming
strategy permits the removal of highly degraded linkers that escape
RNA2MAP.

Reads mapped to the genome by our sequential trimming
approach can be used to detect microRNAs with in-house built
tools, or can easily be converted to input files for popular microRNA
detection tools such as miRDeep (Friedlander et al., 2008) for animal
microRNAs or miRCat (Moxon et al., 2008) for plants.

Using the mapping results of our sequential trimming procedure,
we reanalyze the honeybee small RNA dataset for new microRNAs.
Using strict detection criteria (see Section 2.3), we detected
eight new microRNAs, one of them (ame-mir-2765) with known
homologs in other species (Table 3). All but one have a relatively
low number of reads (Table 3). We also reanalyzed our own
T.castaneum datasets (Marco et al., 2010). We detected 14 additional
new microRNAs that escaped our earlier annotation (Table 3,
Supplementary File 1 in Supplementary Material). Four out of the 14
new microRNAs in Tribolium (tca-mir-6007, tca-mir-6016, tca-mir-
927b, tca-mir-9e) were detected because of our improved strategy
to characterize microRNAs (as described in Section 2.3). However,
the other 10 detections were only possible in color-space, mostly
because low abundance reads from one of the arms did not map in
base space due to sequencing errors.

4 CONCLUSIONS
Our exploration of the consequences of detecting microRNAs
in color space can be summarized in two recommendations,
independent of the particular software used for small RNA mapping.
First, be aware of how your program of choice is dealing with the
first color of the read. Second, do not rely on simple pattern match
approaches to remove linker sequences. The sequential trimming
approach discussed here, or seed mapping and extension, are likely
to result in significantly higher mapping rates. We do not recommend
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Fig. 2. Comparison of reads mapped with RNA2MAP and a sequential trimming strategy. (A) Reads mapped using both strategies to known microRNAs in
miRBase. (B) Reads mapped for both strategies to newly discovered microRNAs by Chen et al. (2010). The inset in both graphs shows a zoomed view of the
shaded area.

Table 3. Novel microRNAs discovered in Apis mellifera and T.castaneum

Name Chr Str Start End Reads

ame-mir-6000 LG11 − 1 144 1637 11 441 734 48
ame-mir-6001 LG13 − 2 650 488 2 650 555 2973
ame-mir-6002 LG16 − 2 944 352 2 944 431 15
ame-mir-6003 LG2 − 705 902 7 059 571 35
ame-mir-6004 LG5 + 7 573 377 7 573 464 26
ame-mir-6005 LG6 − 6 509 945 6 510 107 180
ame-mir-6006 LG9 − 62 686 62 773 19
ame-mir-2765 LG9 + 5 203 815 5 203 903 162
tca-mir-6007 CHR1 + 8 492 377 8 492 463 867
tca-mir-6008 CHR2 + 14 782 252 14 782 347 27
tca-mir-6009 CHR2 + 186 871 186 960 44
tca-mir-6010 CHR2 + 11 831 158 11 831 242 33
tca-mir-6011 CHR3 − 31 219 647 31 219 723 41
tca-mir-6012 CHR3 − 9 600 253 9 600 425 258
tca-mir-6013 CHR4 + 11 124 335 11 124 402 17
tca-mir-6014 CHR4 + 3 369 897 3 369 978 46
tca-mir-6015 CHR4 + 11 485 945 1 1486 036 23
tca-mir-6016 CHR7 − 17 010 368 17 010 442 57
tca-mir-6017 CHR7 − 10 450 348 10 450 502 252
tca-mir-6018 CHR8 − 247 709 247 801 42
tca-mir-927b CHR9 − 16 099 288 16 099 383 224
tca-mir-9e CHR9 − 11 062 11 172 3696

Chr, Chromosome/linkage group; Str, strand; start, first nucleotide position; end, last
nucleotide position; reads: total number of reads.

cropping the read sequences to fixed length since this will create
both false positives and false negatives. For example, a 50 nt read
that maps to the genome is very unlikely to be a microRNA,
yet cropping to 25 nt before mapping could cause an erroneous

microRNA annotation. Deep sequencing was originally devised for
high coverage of relatively long sequences. The application of such
techniques to the detection of small RNAs highlights new issues and
biases. Characterizing these issues is crucial for the development of
more efficient and biologically congruent mapping tools.
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