222 research outputs found

    Wheat rust epidemics damage Ethiopian wheat production: A decade of field disease surveillance reveals national-scale trends in past outbreaks.

    Get PDF
    Wheat rusts are the key biological constraint to wheat production in Ethiopia-one of Africa's largest wheat producing countries. The fungal diseases cause economic losses and threaten livelihoods of smallholder farmers. While it is known that wheat rust epidemics have occurred in Ethiopia, to date no systematic long-term analysis of past outbreaks has been available. We present results from one of the most comprehensive surveillance campaigns of wheat rusts in Africa. More than 13,000 fields have been surveyed during the last 13 years. Using a combination of spatial data-analysis and visualization, statistical tools, and empirical modelling, we identify trends in the distribution of wheat stem rust (Sr), stripe rust (Yr) and leaf rust (Lr). Results show very high infection levels (mean incidence for Yr: 44%; Sr: 34%; Lr: 18%). These recurrent rust outbreaks lead to substantial economic losses, which we estimate to be of the order of 10s of millions of US-D annually. On the widely adopted wheat variety, Digalu, there is a marked increase in disease prevalence following the incursion of new rust races into Ethiopia, which indicates a pronounced boom-and-bust cycle of major gene resistance. Using spatial analyses, we identify hotspots of disease risk for all three rusts, show a linear correlation between altitude and disease prevalence, and find a pronounced north-south trend in stem rust prevalence. Temporal analyses show a sigmoidal increase in disease levels during the wheat season and strong inter-annual variations. While a simple logistic curve performs satisfactorily in predicting stem rust in some years, it cannot account for the complex outbreak patterns in other years and fails to predict the occurrence of stripe and leaf rust. The empirical insights into wheat rust epidemiology in Ethiopia presented here provide a basis for improving future surveillance and to inform the development of mechanistic models to predict disease spread

    Death with functioning kidney transplant: an obituarial analysis

    Get PDF
    Death with a functioning kidney graft (DWFG) is now a major cause of graft loss after renal transplantation, occurring in up to 40% of cases. Its occurrence provides insight into the medical care of subjects with a functioning kidney transplant. In this study, we used the time to DWFG as an endpoint, to test whether improved medical care has contributed to better kidney transplant outcomes. We used single-center data from the Milwaukee Regional Medical Center and Froedtert Hospital, on kidney-only transplants from 1969 through 2005. A total of 3,157 kidney transplants were done at our center during this time. There were 714 deaths with functioning kidney. We also recorded the major causes of DWFG over the time period from 1969 through 2005 divided into 3 epochs. The data were analyzed as a serial collection of yearly obituaries. The time to DWFG has increased to 10 years despite a 20-year increase in the mean age of transplant recipients over the same time period. Better pre-transplant evaluation, improved treatments for hypertension and hyperlipidemia, improved management of acute myocardial infarction, superior immunosuppressive protocols and better prophylaxis and treatment of infectious diseases have all likely contributed to this trend

    Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity

    Get PDF
    Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)

    Activity and Interactions of Liposomal Antibiotics in Presence of Polyanions and Sputum of Patients with Cystic Fibrosis

    Get PDF
    BACKGROUND:To compare the effectiveness of liposomal tobramycin or polymyxin B against Pseudomonas aeruginosa in the Cystic Fibrosis (CF) sputum and its inhibition by common polyanionic components such as DNA, F-actin, lipopolysaccharides (LPS), and lipoteichoic acid (LTA). METHODOLOGY:Liposomal formulations were prepared from a mixture of 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC) or 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC) and Cholesterol (Chol), respectively. Stability of the formulations in different biological milieus and antibacterial activities compared to conventional forms in the presence of the aforementioned inhibitory factors or CF sputum were evaluated. RESULTS:The formulations were stable in all conditions tested with no significant differences compared to the controls. Inhibition of antibiotic formulations by DNA/F-actin and LPS/LTA was concentration dependent. DNA/F-actin (125 to 1000 mg/L) and LPS/LTA (1 to 1000 mg/L) inhibited conventional tobramycin bioactivity, whereas, liposome-entrapped tobramycin was inhibited at higher concentrations--DNA/F-actin (500 to 1000 mg/L) and LPS/LTA (100 to 1000 mg/L). Neither polymyxin B formulation was inactivated by DNA/F-actin, but LPS/LTA (1 to 1000 mg/L) inhibited the drug in conventional form completely and higher concentrations of the inhibitors (100 to 1000 mg/L) was required to inhibit the liposome-entrapped polymyxin B. Co-incubation with inhibitory factors (1000 mg/L) increased conventional (16-fold) and liposomal (4-fold) tobramycin minimum bactericidal concentrations (MBCs), while both polymyxin B formulations were inhibited 64-fold. CONCLUSIONS:Liposome-entrapment reduced antibiotic inhibition up to 100-fold and the CFU of endogenous P. aeruginosa in sputum by 4-fold compared to the conventional antibiotic, suggesting their potential applications in CF lung infections

    Integrating Multiple Biomarkers of Fish Health: A Case Study of Fish Health in Ports

    Get PDF
    Biomarkers of fish health are recognised as valuable biomonitoring tools that inform on the impact of pollution on biota. The integration of a suite of biomarkers in a statistical analysis that better illustrates the effects of exposure to xenobiotics on living organisms is most informative; however, most published ecotoxicological studies base the interpretation of results on individual biomarkers rather than on the information they carry as a set. To compare the interpretation of results from individual biomarkers with an interpretation based on multivariate analysis, a case study was selected where fish health was examined in two species of fish captured in two ports located in Western Australia. The suite of variables selected included chemical analysis of white muscle, body condition index, liver somatic index (LSI), hepatic ethoxyresorufin-O-deethylase activity, serum sorbitol dehydrogenase activity, biliary polycyclic aromatic hydrocarbon metabolites, oxidative DNA damage as measured by serum 8-oxo-dG, and stress protein HSP70 measured on gill tissue. Statistical analysis of individual biomarkers suggested little consistent evidence of the effects of contaminants on fish health. However, when biomarkers were integrated as a set by principal component analysis, there was evidence that the health status of fish in Fremantle port was compromised mainly due to increased LSI and greater oxidative DNA damage in fish captured within the port area relative to fish captured at a remote site. The conclusions achieved using the integrated set of biomarkers show the importance of viewing biomarkers of fish health as a set of variables rather than as isolated biomarkers of fish health

    Locomotor changes in length and EMG activity of feline medial gastrocnemius muscle following paralysis of two synergists

    Get PDF
    The mechanism of the compensatory increase in electromyographic activity (EMG) of a cat ankle extensor during walking shortly after paralysis of its synergists is not fully understood. It is possible that due to greater ankle flexion in stance in this situation, muscle spindles are stretched to a greater extent and, thus, contribute to the EMG enhancement. However, also changes in force feedback and central drive may play a role. The aim of the present study was to investigate the short-term (1- to 2-week post-op) effects of lateral gastrocnemius (LG) and soleus (SO) denervation on muscle fascicle and muscle–tendon unit (MTU) length changes, as well as EMG activity of the intact medial gastrocnemius (MG) muscle in stance during overground walking on level (0%), downslope (−50%, presumably enhancing stretch of ankle extensors in stance) and upslope (+50%, enhancing load on ankle extensors) surfaces. Fascicle length was measured directly using sonomicrometry, and MTU length was calculated from joint kinematics. For each slope condition, LG-SO denervation resulted in an increase in MTU stretch and peak stretch velocity of the intact MG in early stance. MG muscle fascicle stretch and peak stretch velocity were also higher than before denervation in downslope walking. Denervation significantly decreased the magnitude of MG fascicle shortening and peak shortening velocity during early stance in level and upslope walking. MG EMG magnitude in the swing and stance phases was substantially greater after denervation, with a relatively greater increase during stance of level and upslope walking. These results suggest that the fascicle length patterns of MG muscle are significantly altered when two of its synergists are in a state of paralysis. Further, the compensatory increase in MG EMG is likely mediated by enhanced MG length feedback during downslope walking, enhanced feedback from load-sensitive receptors during upslope walking and enhanced central drive in all walking conditions

    Cognitive Behavior Therapy for Anxious Adolescents: Developmental Influences on Treatment Design and Delivery

    Get PDF
    Anxiety disorders in adolescence are common and disruptive, pointing to a need for effective treatments for this age group. Cognitive behavior therapy (CBT) is one of the most popular interventions for adolescent anxiety, and there is empirical support for its application. However, a significant proportion of adolescent clients continue to report anxiety symptoms post-treatment. This paper underscores the need to attend to the unique developmental characteristics of the adolescent period when designing and delivering treatment, in an effort to enhance treatment effectiveness. Informed by the literature from developmental psychology, developmental psychopathology, and clinical child and adolescent psychology, we review the ‘why’ and the ‘how’ of developmentally appropriate CBT for anxious adolescents. ‘Why’ it is important to consider developmental factors in designing and delivering CBT for anxious adolescents is addressed by examining the age-related findings of treatment outcome studies and exploring the influence of developmental factors, including cognitive capacities, on engagement in CBT. ‘How’ clinicians can developmentally tailor CBT for anxious adolescents in six key domains of treatment design and delivery is illustrated with suggestions drawn from both clinically and research-oriented literature. Finally, recommendations are made for research into developmentally appropriate CBT for anxious adolescents

    Ice sheets as a missing source of silica to the polar oceans

    Get PDF
    Ice sheets play a more important role in the global silicon cycle than previously appreciated. Input of dissolved and amorphous particulate silica into natural waters stimulates the growth of diatoms. Here we measure dissolved and amorphous silica in Greenland Ice Sheet meltwaters and icebergs, demonstrating the potential for high ice sheet export. Our dissolved and amorphous silica flux is 0.20 (0.06-0.79) Tmol year(-1), ∼50% of the input from Arctic rivers. Amorphous silica comprises >95% of this flux and is highly soluble in sea water, as indicated by a significant increase in dissolved silica across a fjord salinity gradient. Retreating palaeo ice sheets were therefore likely responsible for high dissolved and amorphous silica fluxes into the ocean during the last deglaciation, reaching values of ∼5.5 Tmol year(-1), similar to the estimated export from palaeo rivers. These elevated silica fluxes may explain high diatom productivity observed during the last glacial-interglacial period
    corecore