37 research outputs found

    The electronic NOSE and its application to the manufacture of food products

    Get PDF
    The Electronic NOSE (Neotronics Olfactory Sensing Equipment) is an instrument which mimics the human olfactory sensory system. It analyses complex vapours and produces a simple output. In the food industry there are numerous examples where the aroma from the raw ingredients through to the final product are important. These aromas are currently analysed using human sensory panels or analytical equipment such as gas chromatography/mass spectroscopy (GC/MS)

    The integration of bio, micro and nano technologies to produce a range of Medical Implants from the Healthy Aims Project

    Get PDF
    Abstract -This paper describes how new medical implants are being developed under the Healthy Aims Project, integrating a range of technologies

    Healthy aims: developing new medical implants and diagnostic equipment

    Get PDF
    Healthy Aims is a €23-million, four-year project, funded under the EU’s Information Society Technology Sixth Framework program to develop intelligent medical implants and diagnostic systems (www.healthyaims.org). The project has 25 partners from 10 countries, including commercial, clinical, and research groups. This consortium represents a combination of disciplines to design and fabricate new medical devices and components as well as to test them in laboratories and subsequent clinical trials. The project focuses on medical implants for nerve stimulation and diagnostic equipment based on straingauge technology

    Quantitative trait loci mapping reveals an oligogenic architecture of a rapidly adapting trait during the European invasion of common ragweed

    Get PDF
    Biological invasions offer a unique opportunity to investigate evolution over contemporary timescales. Rapid adaptation to local climates during range expansion can be a major determinant of invasion success, yet fundamental questions remain about its genetic basis. This study sought to investigate the genetic basis of climate adaptation in invasive common ragweed (Ambrosia artemisiifolia). Flowering time adaptation is key to this annual species' invasion success, so much so that it has evolved repeated latitudinal clines in size and phenology across its native and introduced ranges despite high gene flow among populations. Here, we produced a high-density linkage map (4493 SNPs) and paired this with phenotypic data from an F2 mapping population (n = 336) to identify one major and two minor quantitative trait loci (QTL) underlying flowering time and height differentiation in this species. Within each QTL interval, several candidate flowering time genes were also identified. Notably, the major flowering time QTL detected in this study was found to overlap with a previously identified haploblock (putative inversion). Multiple genetic maps of this region identified evidence of suppressed recombination in specific genotypes, consistent with inversions. These discoveries support the expectation that a concentrated genetic architecture with fewer, larger, and more tightly linked alleles should underlie rapid local adaptation during invasion, particularly when divergently adapting populations experience high levels of gene flow

    Validation of inertial measurement units with optical tracking system in patients operated with Total hip arthroplasty

    Get PDF
    Patient reported outcome measurement (PROMs) will not capture in detail the functional joint motion before and after total hip arthroplasty (THA). Therefore, methods more specifically aimed to analyse joint movements may be of interest. An analysis method that addresses these issues should be readily accessible and easy to use especially if applied to large groups of patients, who you want to study both before and after a surgical intervention such as THA. Our aim was to evaluate the accuracy of inertial measurement units (IMU) by comparison with an optical tracking system (OTS) to record pelvic tilt, hip and knee flexion in patients who had undergone THA.This article is freely available via Open Access. Click on the Publisher's URL to access the full-text

    The position of authenticity within extant models of personality.

    Get PDF
    The aim of the current study was to explore where authenticity, derived from the humanistic tradition of psychology, was positioned within a number of extant models of personality. Exploratory and Confirmatory Factor Analysis of data from four samples (total N = 1286) suggested that authenticity can be considered as loading on the Honesty–Humility factor of personality. These findings are discussed in terms of the wider theoretical overlaps between Honesty–Humility and psychological functioning as emphasised by the humanistic tradition of psychology

    Relationship Between Motion, Using the GaitSmartTM System, and Radiographic Knee Osteoarthritis: An Explorative Analysis in the IMI-APPROACH Cohort

    Get PDF
    Multicenter study[Abstract] Objectives: To assess underlying domains measured by GaitSmartTMparameters and whether these are additional to established OA markers including patient reported outcome measures (PROMs) and radiographic parameters, and to evaluate if GaitSmart analysis is related to the presence and severity of radiographic knee OA. Methods: GaitSmart analysis was performed during baseline visits of participants of the APPROACH cohort (n = 297). Principal component analyses (PCA) were performed to explore structure in relationships between GaitSmart parameters alone and in addition to radiographic parameters and PROMs. Logistic and linear regression analyses were performed to analyse the relationship of GaitSmart with the presence (Kellgren and Lawrence grade ≄2 in at least one knee) and severity of radiographic OA (ROA). Results: Two hundred and eighty-four successful GaitSmart analyses were performed. The PCA identified five underlying GaitSmart domains. Radiographic parameters and PROMs formed additional domains indicating that GaitSmart largely measures separate concepts. Several GaitSmart domains were related to the presence of ROA as well as the severity of joint damage in addition to demographics and PROMs with an area under the receiver operating characteristic curve of 0.724 and explained variances (adjusted R2) of 0.107, 0.132 and 0.147 for minimum joint space width, osteophyte area and mean subchondral bone density, respectively. Conclusions: GaitSmart analysis provides additional information over established OA outcomes. GaitSmart parameters are also associated with the presence of ROA and extent of radiographic severity over demographics and PROMS. These results indicate that GaitsmartTM may be an additional outcome measure for the evaluation of OA

    Global urban environmental change drives adaptation in white clover

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale
    corecore