956 research outputs found

    Muscle fiber and motor unit behavior in the longest human skeletal muscle

    Get PDF
    The sartorius muscle is the longest muscle in the human body. It is strap-like, up to 600 mm in length, and contains five to seven neurovascular compartments, each with a neuromuscular endplate zone. Some of its fibers terminate intrafascicularly, whereas others may run the full length of the muscle. To assess the location and timing of activation within motor units of this long muscle, we recorded electromyographic potentials from multiple intramuscular electrodes along sartorius muscle during steady voluntary contraction and analyzed their activity with spike-triggered averaging from a needle electrode inserted near the proximal end of the muscle. Approximately 30% of sartorius motor units included muscle fibers that ran the full length of the muscle, conducting action potentials at 3.9 +/- 0.1 m/s. Most motor units were innervated within a single muscle endplate zone that was not necessarily near the midpoint of the fiber. As a consequence, action potentials reached the distal end of a unit as late as 100 ms after initiation at an endplate zone. Thus, contractile activity is not synchronized along the length of single sartorius fibers. We postulate that lateral transmission of force from fiber to endomysium and a wide distribution of motor unit endplates along the muscle are critical for the efficient transmission of force from sarcomere to tendon and for the prevention of muscle injury caused by overextension of inactive regions of muscle fibers

    Borneo Vortices in a warmer climate

    Get PDF
    This is the final version. Available from Nature Research via the DOI in this record. DATA AVAILABILITY: The CMIP6 HighResMIP data are downloaded from the data node website of the Lawrence Livermore National Laboratory (https://esgf-node.llnl.gov/projects/cmip6/). The ERA5 climate reanalysis datasets can be downloaded from the website of the Copernicus Programme (https://cds.climate.copernicus.eu/cdsapp#!/dataset/ reanalysis-era5-pressure-levels?tab=overview). The TRACK outputs for the identified BV features based on the datasets above are available upon request from the corresponding author Ju Liang: [email protected] Vortices (BVs) are weather systems that are responsible for devastating hydro-climatic extremes and significant losses of life and property in Southeast Asia. The typical resolution of most current climate models is insufficient to resolve these high-impact, synoptic-scale weather systems. Here, an ensemble of high-resolution models projects that future BVs may become less frequent and more stationary, driven by the weakening of the Northeast monsoon flow and associated cold surges across North Borneo. However, substantial increases in both the intensity and the total amount of precipitation from BVs are projected. Such changes are driven by the more humid and convectively unstable lower troposphere. As a result, the contribution of BVs to the accumulation of both total precipitation and extreme precipitation is projected to increase considerably in the vicinity of the southern South China Sea, making individual BVs more threatening to the adjacent coastal regions.Natural Environment Research CouncilMinistry of Higher Education MalaysiaMinistry of Higher Education Malaysi

    Plasma levels of soluble TREM2 and neurofilament light chain in TREM2 rare variant carriers

    Get PDF
    Background: Results from recent clinical studies suggest that cerebrospinal fluid (CSF) biomarkers that are indicative of Alzheimer’s disease (AD) can be replicated in blood, e.g. amyloid-beta peptides (Aβ42 and Aβ40) and neurofilament light chain (NFL). Such data proposes that blood is a rich source of potential biomarkers reflecting central nervous system pathophysiology and should be fully explored for biomarkers that show promise in CSF. Recently, soluble fragments of the triggering receptor expressed on myeloid cells 2 (sTREM2) protein in CSF have been reported to be increased in prodromal AD and also in individuals with TREM2 rare genetic variants that increase the likelihood of developing dementia. / Methods: In this study, we measured the levels of plasma sTREM2 and plasma NFL using the MesoScale Discovery and single molecule array platforms, respectively, in 48 confirmed TREM2 rare variant carriers and 49 non-carriers. / Results: Our results indicate that there are no changes in plasma sTREM2 and NFL concentrations between TREM2 rare variant carriers and non-carriers. Furthermore, plasma sTREM2 is not different between healthy controls, mild cognitive impairment (MCI) or AD. / Conclusion: Concentrations of plasma sTREM2 do not mimic the recent changes found in CSF sTREM2

    Incidence and drug treatment of emotional distress after cancer diagnosis : a matched primary care case-control study

    Get PDF
    Notes This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License.Peer reviewedPublisher PD

    Cerebellar Integrity in the Amyotrophic Lateral Sclerosis - Frontotemporal Dementia Continuum

    Get PDF
    Amyotrophic lateral sclerosis (ALS) and behavioural variant frontotemporal dementia (bvFTD) are multisystem neurodegenerative disorders that manifest overlapping cognitive, neuropsychiatric and motor features. The cerebellum has long been known to be crucial for intact motor function although emerging evidence over the past decade has attributed cognitive and neuropsychiatric processes to this structure. The current study set out i) to establish the integrity of cerebellar subregions in the amyotrophic lateral sclerosis-behavioural variant frontotemporal dementia spectrum (ALS-bvFTD) and ii) determine whether specific cerebellar atrophy regions are associated with cognitive, neuropsychiatric and motor symptoms in the patients. Seventy-eight patients diagnosed with ALS, ALS-bvFTD, behavioural variant frontotemporal dementia (bvFTD), most without C9ORF72 gene abnormalities, and healthy controls were investigated. Participants underwent cognitive, neuropsychiatric and functional evaluation as well as structural imaging using voxel-based morphometry (VBM) to examine the grey matter subregions of the cerebellar lobules, vermis and crus. VBM analyses revealed: i) significant grey matter atrophy in the cerebellum across the whole ALS-bvFTD continuum; ii) atrophy predominantly of the superior cerebellum and crus in bvFTD patients, atrophy of the inferior cerebellum and vermis in ALS patients, while ALS-bvFTD patients had both patterns of atrophy. Post-hoc covariance analyses revealed that cognitive and neuropsychiatric symptoms were particularly associated with atrophy of the crus and superior lobule, while motor symptoms were more associated with atrophy of the inferior lobules. Taken together, these findings indicate an important role of the cerebellum in the ALS-bvFTD disease spectrum, with all three clinical phenotypes demonstrating specific patterns of subregional atrophy that associated with different symptomology

    Longitudinal grey and white matter changes in frontotemporal dementia and Alzheimer's disease

    Get PDF
    Behavioural variant frontotemporal dementia (bvFTD) and Alzheimer's disease (AD) dementia are characterised by progressive brain atrophy. Longitudinal MRI volumetry may help to characterise ongoing structural degeneration and support the differential diagnosis of dementia subtypes. Automated, observer-independent atlas-based MRI volumetry was applied to analyse 102 MRI data sets from 15 bvFTD, 14 AD, and 10 healthy elderly control participants with consecutive scans over at least 12 months. Anatomically defined targets were chosen a priori as brain structures of interest. Groups were compared regarding volumes at clinic presentation and annual change rates. Baseline volumes, especially of grey matter compartments, were significantly reduced in bvFTD and AD patients. Grey matter volumes of the caudate and the gyrus rectus were significantly smaller in bvFTD than AD. The bvFTD group could be separated from AD on the basis of caudate volume with high accuracy (79% cases correct). Annual volume decline was markedly larger in bvFTD and AD than controls, predominantly in white matter of temporal structures. Decline in grey matter volume of the lateral orbitofrontal gyrus separated bvFTD from AD and controls. Automated longitudinal MRI volumetry discriminates bvFTD from AD. In particular, greater reduction of orbitofrontal grey matter and temporal white matter structures after 12 months is indicative of bvFTD

    Deletion of Munc18-1 in 5-HT Neurons Results in Rapid Degeneration of the 5-HT System and Early Postnatal Lethality

    Get PDF
    The serotonin (5-HT) system densely innervates many brain areas and is important for proper brain development. To specifically ablate the 5-HT system we generated mutant mice carrying a floxed Munc18-1 gene and Cre recombinase driven by the 5-HT-specific serotonin reuptake transporter (SERT) promoter. The majority of mutant mice died within a few days after birth. Immunohistochemical analysis of brains of these mice showed that initially 5-HT neurons are formed and the cortex is innervated with 5-HT projections. From embryonic day 16 onwards, however, 5-HT neurons started to degenerate and at postnatal day 2 hardly any 5-HT projections were present in the cortex. The 5-HT system of mice heterozygous for the floxed Munc18-1 allele was indistinguishable from control mice. These data show that deletion of Munc18-1 in 5-HT neurons results in rapid degeneration of the 5-HT system and suggests that the 5-HT system is important for postnatal survival
    corecore