246 research outputs found

    High-Efficiency Stem Cell Fusion-Mediated Assay Reveals Sall4 as an Enhancer of Reprogramming

    Get PDF
    Several methods allow reprogramming of differentiated somatic cells to embryonic stem cell-like cells. However, the process of reprogramming remains inefficient and the underlying molecular mechanisms are poorly understood. Here, we report the optimization of somatic cell fusion with embryonic stem cells in order to provide an efficient, quantitative assay to screen for factors that facilitate reprogramming. Following optimization, we achieved a reprogramming efficiency 15–590 fold higher than previous protocols. This allowed observation of cellular events during the reprogramming process. Moreover, we demonstrate that overexpression of the Spalt transcription factor, Sall4, which was previously identified as a regulator of embryonic stem cell pluripotency and early mouse development, can enhance reprogramming. The reprogramming activity of Sall4 is independent of an N-terminal domain implicated in recruiting the nucleosome remodeling and deacetylase corepressor complex, a global transcriptional repressor. These results indicate that improvements in reprogramming assays, including fusion assays, may allow the systematic identification and molecular characterization of enhancers of somatic cell reprogramming

    Dissecting dual roles of MyoD during lineage conversion to mature myocytes and myogenic stem cells

    Get PDF
    The generation of myotubes from fibroblasts upon forced MyoD expression is a classic example of transcription factor-induced reprogramming. We recently discovered that additional modulation of signaling pathways with small molecules facilitates reprogramming to more primitive induced myogenic progenitor cells (iMPCs). Here, we dissected the transcriptional and epigenetic dynamics of mouse fibroblasts undergoing reprogramming to either myotubes or iMPCs using a MyoD-inducible transgenic model. Induction of MyoD in fibroblasts combined with small molecules generated Pax7+ iMPCs with high similarity to primary muscle stem cells. Analysis of intermediate stages of iMPC induction revealed that extinction of the fibroblast program preceded induction of the stem cell program. Moreover, key stem cell genes gained chromatin accessibility prior to their transcriptional activation, and these regions exhibited a marked loss of DNA methylation dependent on the Tet enzymes. In contrast, myotube generation was associated with few methylation changes, incomplete and unstable reprogramming, and an insensitivity to Tet depletion. Finally, we showed that MyoD's ability to bind to unique bHLH targets was crucial for generating iMPCs but dispensable for generating myotubes. Collectively, our analyses elucidate the role of MyoD in myogenic reprogramming and derive general principles by which transcription factors and signaling pathways cooperate to rewire cell identity

    Keystone symposium: The role of microenvironment in tumor induction and progression, Banff, Canada, 5–10 February 2005

    Get PDF
    The first Keystone symposium on the role of microenvironment in tumor induction and progression attracted 274 delegates from 13 countries to Banff in the heart of the Canadian Rockies. The meeting was organized by Mina Bissell, Ronald DePinho and Luis Parada, and was held concurrently with the Keystone symposium on cancer and development, chaired by Matthew Scott and Roeland Nusse. The 30 oral presentations and over 130 posters provided an excellent forum for discussing emerging data in this rapidly advancing field

    Virus-free induction of pluripotency and subsequent excision of reprogramming factors

    Get PDF
    Reprogramming of somatic cells to pluripotency, thereby creating induced pluripotent stem (iPS) cells, promises to transform regenerative medicine. Most instances of direct reprogramming have been achieved by forced expression of defined factors using multiple viral vectors1-7. However, such iPS cells contain a large number of viral vector integrations1,8, any one of which could cause unpredictable genetic dysfunction. While c-Myc is dispensable for reprogramming9,10, complete elimination of the other exogenous factors is also desired since ectopic expression of either Oct4 or Klf4 can induce dysplasia11,12. Two transient transfection reprogramming methods have been published to address this issue13,14. However, the efficiency of either approach is extremely low, and neither has thus far been applied successfully to human cells. Here we show that non-viral transfection of a single multiprotein expression vector, which comprises the coding sequences of c-Myc​,​ Klf4​,​ Oct4 and Sox2 linked with 2A peptides, can reprogram both mouse and human fibroblasts. Moreover, the transgene can be removed once reprogramming has been achieved. iPS cells produced with this non-viral vector show robust expression of pluripotency markers, indicating a reprogrammed state confirmed functionally by in vitro differentiation assays and formation of adult chimeric mice. When the single vector reprogramming system was combined with a piggyBac transposon15,16 we succeeded in establishing reprogrammed human cell lines from embryonic fibroblasts with robust expression of pluripotency markers. This system minimizes genome modification in iPS cells and enables complete elimination of exogenous reprogramming factors, efficiently providing iPS cells that are applicable to regenerative medicine, drug screening and the establishment of disease models

    Reprogramming of Embryonic Human Fibroblasts into Fetal Hematopoietic Progenitors by Fusion with Human Fetal Liver CD34+ Cells

    Get PDF
    Experiments with somatic cell nuclear transfer, inter-cellular hybrid formation_ENREF_3, and ectopic expression of transcription factors have clearly demonstrated that cell fate can be dramatically altered by changing the epigenetic state of cell nuclei. Here we demonstrate, using chemical fusion, direct reprogramming of the genome of human embryonic fibroblasts (HEF) into the state of human fetal liver hFL CD34+ (hFL) hematopoietic progenitors capable of proliferating and differentiating into multiple hematopoietic lineages. We show that hybrid cells retain their ploidy and can differentiate into several hematopoietic lineages. Hybrid cells follow transcription program of differentiating hFL cells as shown by genome-wide transcription profiling. Using whole-genome single nucleotide polymorphism (SNP) profiling of both donor genomes we demonstrate reprogramming of HEF genome into the state of hFL hematopoietic progenitors. Our results prove that it is possible to convert the fetal somatic cell genome into the state of fetal hematopoietic progenitors by fusion. This suggests a possibility of direct reprogramming of human somatic cells into tissue specific progenitors/stem cells without going all the way back to the embryonic state. Direct reprogramming of terminally differentiated cells into the tissue specific progenitors will likely prove useful for the development of novel cell therapies

    Freeze-Dried Somatic Cells Direct Embryonic Development after Nuclear Transfer

    Get PDF
    The natural capacity of simple organisms to survive in a dehydrated state has long been exploited by man, with lyophylization the method of choice for the long term storage of bacterial and yeast cells. More recently, attempts have been made to apply this procedure to the long term storage of blood cells. However, despite significant progress, practical application in a clinical setting is still some way off. Conversely, to date there are no reports of attempts to lyophilize nucleated somatic cells for possible downstream applications. Here we demonstrate that lyophilised somatic cells stored for 3 years at room temperature are able to direct embryonic development following injection into enucleated oocytes. These remarkable results demonstrate that alternative systems for the long-term storage of cell lines are now possible, and open unprecedented opportunities in the fields of biomedicine and for conservation strategies

    Tissue engineering, stem cells, cloning, and parthenogenesis: new paradigms for therapy

    Get PDF
    Patients suffering from diseased and injured organs may be treated with transplanted organs. However, there is a severe shortage of donor organs which is worsening yearly due to the aging population. Scientists in the field of tissue engineering apply the principles of cell transplantation, materials science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Both therapeutic cloning (nucleus from a donor cell is transferred into an enucleated oocyte), and parthenogenesis (oocyte is activated and stimulated to divide), permit extraction of pluripotent embryonic stem cells, and offer a potentially limitless source of cells for tissue engineering applications. The stem cell field is also advancing rapidly, opening new options for therapy. The present article reviews recent progress in tissue engineering and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure

    Functional Myogenic Engraftment from Mouse iPS Cells

    Get PDF
    Direct reprogramming of adult fibroblasts to a pluripotent state has opened new possibilities for the generation of patient- and disease-specific stem cells. However the ability of induced pluripotent stem (iPS) cells to generate tissue that mediates functional repair has been demonstrated in very few animal models of disease to date. Here we present the proof of principle that iPS cells may be used effectively for the treatment of muscle disorders. We combine the generation of iPS cells with conditional expression of Pax7, a robust approach to derive myogenic progenitors. Transplantation of Pax7-induced iPS-derived myogenic progenitors into dystrophic mice results in extensive engraftment, which is accompanied by improved contractility of treated muscles. These findings demonstrate the myogenic regenerative potential of iPS cells and provide rationale for their future therapeutic application for muscular dystrophies

    Normal stem cells in cancer prone epithelial tissues

    Get PDF
    The concept of a cancer stem cell is not a new one, being first suggested over 100 years ago. Over recent years the concept has enjoyed renewed enthusiasm, partly because of our growing understanding of the nature of somatic stem cells, but also because of a growing realisation that the development of strategies that target cancer stem cells may offer considerable advantages over conventional approaches. However, despite this renewed enthusiasm the existence of cancer stem cells remains controversial in many tumour types and any potential relationship to the normal stem cell pool remains poorly defined. This review summarises key elements of our understanding of the normal stem cell populations within animal models of the predominant cancer prone epithelial tissues, and further investigates the potential links between these populations and putative cancer stem cells
    corecore