133 research outputs found
Dispersal similarly shapes both population genetics and community patterns in the marine realm.
Dispersal plays a key role to connect populations and, if limited, is one of the main processes to
maintain and generate regional biodiversity. According to neutral theories of molecular evolution and
biodiversity, dispersal limitation of propagules and population stochasticity are integral to shaping
both genetic and community structure. We conducted a parallel analysis of biological connectivity
at genetic and community levels in marine groups with different dispersal traits. We compiled
large data sets of population genetic structure (98 benthic macroinvertebrate and 35 planktonic
species) and biogeographic data (2193 benthic macroinvertebrate and 734 planktonic species). We
estimated dispersal distances from population genetic data (i.e., FST vs. geographic distance) and
from β-diversity at the community level. Dispersal distances ranked the biological groups in the same
order at both genetic and community levels, as predicted by organism dispersal ability and seascape
connectivity: macrozoobenthic species without dispersing larvae, followed by macrozoobenthic
species with dispersing larvae and plankton (phyto- and zooplankton). This ranking order is associated
with constraints to the movement of macrozoobenthos within the seabed compared with the
pelagic habitat. We showed that dispersal limitation similarly determines the connectivity degree of
communities and populations, supporting the predictions of neutral theories in marine biodiversity
patterns.RADIALES (IEO)Versión del edito
CONCERTO: Extracting the power spectrum of the [C II ] emission line
CONCERTO is the first experiment to perform a [CII] line intensity mapping
survey to target . Measuring the [CII] power spectrum allows us to study
the role of dusty star-forming galaxies in the star formation history during
the Reionization and post-Reionization. The main obstacle to this measurement
is the contamination by bright foregrounds. We evaluate our ability to retrieve
the [CII] signal in mock observations using the Simulated Infrared Dusty
Extragalactic Sky. We compared two methods for dealing with the dust continuum
emission from galaxies: the standard PCA and the arPLS method. For line
interlopers, the strategy relies on masking low-redshift galaxies using
external catalogues. As we do not have observations of CO or classical CO
proxies ,we relied on the COSMOS stellar mass catalogue. To measure the power
spectrum of masked data, we adapted the P of K EstimatoR and discuss its use on
LIM data. The arPLS method achieves a reduction of the continuum background to
a sub-dominant level of the [CII] at z=7 by a factor of>70. When using PCA,
this factor is only 0.7. The masking lowers the power amplitude of line
contamination down to This residual level is dominated
by faint undetected sources. For our [CII] model, this results in a detection
at z = 5.2 with a power ratio [CII]/(residual interlopers) = for a
22 % area survey loss. However, at z = 7, [C II ] / (residual interlopers). Thanks to the large area covered by SIDES-Uchuu, we show that the
power amplitude of line residuals varies by 12-15% for z=5.2-7. We present an
end-to-end simulation of the extragalactic foreground removal that we ran to
detect the [CII] at high redshift via its power spectrum. We show that dust
continuum emission are not a limiting foreground for [CII] LIM. Residual CO and
[CI] limits our ability to measure the [CII] power spectrum at z>7.Comment: 15 pages, 12 figures, to be published in Astronomy & Astrophysic
Chikungunya Virus Infection
Chikungunya virus (CHIKV) is an alphavirus transmitted by mosquitoes, mostly Aedes aegypti and Aedes albopictus. After half a century of focal outbreaks of acute febrile polyarthralgia in Africa and Asia, the disease unexpectedly spread in the past decade with large outbreaks in Africa and around the Indian Ocean and rare autochthonous transmission in temperate areas. This emergence brought new insights on its pathogenesis, notably the role of the A226V mutation that improved CHIKV fitness in Ae. albopictus and the possible CHIKV persistence in deep tissue sanctuaries for months after infection. Massive outbreaks also revealed new aspects of the acute stage: the high number of symptomatic cases, unexpected complications, mother-to-child transmission, and low lethality in debilitated patients. The follow-up of patients in epidemic areas has identified frequent, long-lasting, rheumatic disorders, including rare inflammatory joint destruction, and common chronic mood changes associated with quality-of-life impairment. Thus, the globalization of CHIKV exposes countries with Aedes mosquitoes both to brutal outbreaks of acute incapacitating episodes and endemic long-lasting disorders
A wide field-of-view low-resolution spectrometer at APEX: Instrument design and scientific forecast
Context. Characterising the large-scale structure in the Universe from present times to the high redshift epoch of reionisation is essential to constraining the cosmology, the history of star formation, and reionisation, to measuring the gas content of the Universe, and to obtaining a better understanding of the physical processes that drive galaxy formation and evolution. Using the integrated emission from unresolved galaxies or gas clouds, line intensity mapping (LIM) provides a new observational window to measure the larger properties of structures. This very promising technique motivates the community to plan for LIM experiments. Aims. We describe the development of a large field-of-view instrument, named CONCERTO (for CarbON CII line in post-rEionisation and ReionisaTiOn epoch), operating in the range 130-310 GHz from the APEX 12-m telescope (5100 m above sea level). CONCERTO is a low-resolution spectrometer based on the lumped element kinetic inductance detectors (LEKID) technology. Spectra are obtained using a fast Fourier transform spectrometer (FTS), coupled to a dilution cryostat with a base temperature of 0.1 K. Two two kilo-pixel arrays of LEKID are mounted inside the cryostat that also contains the cold optics and the front-end electronics. Methods. We present, in detail, the technological choices leading to the instrumental concept, together with the design and fabrication of the instrument and preliminary laboratory tests on the detectors. We also give our best estimates for CONCERTO sensitivity and give predictions for two of the main scientific goals of CONCERTO, that is, a [CII]-intensity mapping survey and observations of galaxy clusters. Results. We provide a detailed description of the instrument design. Based on realistic comparisons with existing instruments developed by our group (NIKA, NIKA2, and KISS), and on the laboratory characterisation of our detectors, we provide an estimate for CONCERTO sensitivity on the sky. Finally, we describe, in detail, two of the main scientific goals offered by CONCERTO at APEX
Variation analysis and gene annotation of eight MHC haplotypes: The MHC Haplotype Project
The human major histocompatibility complex (MHC) is contained within about 4 Mb on the short arm of chromosome 6 and is recognised as the most variable region in the human genome. The primary aim of the MHC Haplotype Project was to provide a comprehensively annotated reference sequence of a single, human leukocyte antigen-homozygous MHC haplotype and to use it as a basis against which variations could be assessed from seven other similarly homozygous cell lines, representative of the most common MHC haplotypes in the European population. Comparison of the haplotype sequences, including four haplotypes not previously analysed, resulted in the identification of >44,000 variations, both substitutions and indels (insertions and deletions), which have been submitted to the dbSNP database. The gene annotation uncovered haplotype-specific differences and confirmed the presence of more than 300 loci, including over 160 protein-coding genes. Combined analysis of the variation and annotation datasets revealed 122 gene loci with coding substitutions of which 97 were non-synonymous. The haplotype (A3-B7-DR15; PGF cell line) designated as the new MHC reference sequence, has been incorporated into the human genome assembly (NCBI35 and subsequent builds), and constitutes the largest single-haplotype sequence of the human genome to date. The extensive variation and annotation data derived from the analysis of seven further haplotypes have been made publicly available and provide a framework and resource for future association studies of all MHC-associated diseases and transplant medicine
Unconventional Repertoire Profile Is Imprinted during Acute Chikungunya Infection for Natural Killer Cells Polarization toward Cytotoxicity
Chikungunya virus (CHIKV) is a worldwide emerging pathogen. In humans it causes a syndrome characterized by high fever, polyarthritis, and in some cases lethal encephalitis. Growing evidence indicates that the innate immune response plays a role in controlling CHIKV infection. We show here that CHIKV induces major but transient modifications in NK-cell phenotype and function soon after the onset of acute infection. We report a transient clonal expansion of NK cells that coexpress CD94/NKG2C and inhibitory receptors for HLA-C1 alleles and are correlated with the viral load. Functional tests reveal cytolytic capacity driven by NK cells in the absence of exogenous signals and severely impaired IFN-γ production. Collectively these data provide insight into the role of this unique subset of NK cells in controlling CHIKV infection by subset-specific expansion in response to acute infection, followed by a contraction phase after viral clearance
Evidence for Paternal Leakage in Hybrid Periodical Cicadas (Hemiptera: Magicicada spp.)
Mitochondrial inheritance is generally assumed to be maternal. However, there is increasing evidence of exceptions to this rule, especially in hybrid crosses. In these cases, mitochondria are also inherited paternally, so “paternal leakage” of mitochondria occurs. It is important to understand these exceptions better, since they potentially complicate or invalidate studies that make use of mitochondrial markers. We surveyed F1 offspring of experimental hybrid crosses of the 17-year periodical cicadas Magicicada septendecim, M. septendecula, and M. cassini for the presence of paternal mitochondrial markers at various times during development (1-day eggs; 3-, 6-, 9-week eggs; 16-month old 1st and 2nd instar nymphs). We found evidence of paternal leakage in both reciprocal hybrid crosses in all of these samples. The relative difficulty of detecting paternal mtDNA in the youngest eggs and ease of detecting leakage in older eggs and in nymphs suggests that paternal mitochondria proliferate as the eggs develop. Our data support recent theoretical predictions that paternal leakage may be more common than previously estimated
Chikungunya Disease: Infection-Associated Markers from the Acute to the Chronic Phase of Arbovirus-Induced Arthralgia
At the end of 2005, an outbreak of fever associated with joint pain occurred in La Réunion. The causal agent, chikungunya virus (CHIKV), has been known for 50 years and could thus be readily identified. This arbovirus is present worldwide, particularly in India, but also in Europe, with new variants returning to Africa. In humans, it causes a disease characterized by a typical acute infection, sometimes followed by persistent arthralgia and myalgia lasting months or years. Investigations in the La Réunion cohort and studies in a macaque model of chikungunya implicated monocytes-macrophages in viral persistence. In this Review, we consider the relationship between CHIKV and the immune response and discuss predictive factors for chronic arthralgia and myalgia by providing an overview of current knowledge on chikungunya pathogenesis. Comparisons of data from animal models of the acute and chronic phases of infection, and data from clinical series, provide information about the mechanisms of CHIKV infection–associated inflammation, viral persistence in monocytes-macrophages, and their link to chronic signs
Genetic dissection of fruit quality traits in the octoploid cultivated strawberry highlights the role of homoeo-QTL in their control
Fruit quality traits are major breeding targets in the Rosaceae. Several of the major Rosaceae species are current or ancient polyploids. To dissect the inheritance of fruit quality traits in polyploid fleshy fruit species, we used a cultivated strawberry segregating population comprising a 213 full-sibling F1 progeny from a cross between the variety ‘Capitola’ and the genotype ‘CF1116’. We previously developed the most comprehensive strawberry linkage map, which displays seven homoeology groups (HG), including each four homoeology linkage groups (Genetics 179:2045–2060, 2008). The map was used to identify quantitative trait loci (QTL) for 19 fruit traits related to fruit development, texture, colour, anthocyanin, sugar and organic acid contents. Analyses were carried out over two or three successive years on field-grown plants. QTL were detected for all the analysed traits. Because strawberry is an octopolyploid species, QTL controlling a given trait and located at orthologous positions on different homoeologous linkage groups within one HG are considered as homoeo-QTL. We found that, for various traits, about one-fourth of QTL were putative homoeo-QTL and were localised on two linkage groups. Several homoeo-QTL could be detected the same year, suggesting that several copies of the gene underlying the QTL are functional. The detection of some other homoeo-QTL was year-dependent. Therefore, changes in allelic expression could take place in response to environmental changes. We believe that, in strawberry as in other polyploid fruit species, the mechanisms unravelled in the present study may play a crucial role in the variations of fruit quality
- …