102 research outputs found

    Temporal diabetes-induced biochemical changes in distinctive layers of mouse retina

    Get PDF
    To discover the mechanisms underlying the progression of diabetic retinopathy (DR), a more comprehensive understanding of the biomolecular processes in individual retinal cells subjected to hyperglycemia is required. Despite extensive studies, the changes in the biochemistry of retinal layers during the development of DR are not well known. In this study, we aimed to determine a more detailed understanding of the natural history of DR in Akita/+ (type 1 diabetes model) male mice with different duration of diabetes. Employing label-free spatially resolved Fourier transform infrared (FTIR) chemical imaging engaged with multivariate analysis enabled us to identify temporal-dependent reproducible biomarkers of the individual retinal layers from mice with 6 weeks,12 weeks, 6 months, and 10 months of age. We report, for the first time, the nature of the biochemical alterations over time in the biochemistry of distinctive retinal layers namely photoreceptor retinal layer (PRL), inner nuclear layer (INL), and plexiform layers (OPL, IPL). Moreover, we present the molecular factors associated with the changes in the protein structure and cellular lipids of retinal layers induced by different duration of diabetes. Our paradigm provides a new conceptual framework for a better understanding of the temporal cellular changes underlying the progression of DR

    Photoelectron diffraction study of ultrathin Fe films on Cu{111}

    Get PDF
    Using photoelectron diffraction in the scanned-energy mode we show that at 300 K iron grows pseudomorphically on Cu{111} up to a thickness of about two equivalent monolayers. The Fe-Cu layer separation is 1.99 Å. Above this thickness the film becomes bcc with {110} orientation and is aligned such that the 〈111〉 rows are parallel to the 〈110〉 rows of the fcc{111} surface (Kurdjumov-Sachs orientation). The Fe-Fe first-layer separation is 1.95 Å

    Estimating and correcting interference fringes in infrared spectra in infrared hyperspectral imaging

    Get PDF
    Short-term acclimation response of individual cells of Thalassiosira weissflogii was monitored by Synchrotron FTIR imaging over the span of 75 minutes. The cells, collected from batch cultures, were maintained in a constant flow of medium, at an irradiance of 120 μmol m−2 s−1 and at 20 °C. Multiple internal reflections due to the micro fluidic channel were modeled, and showed that fringes are additive sinusoids to the pure absorption of the other components of the system. Preprocessing of the hyperspectral cube (x, y, Abs(λ)) included removing spectral fringe using an EMSC approach. Principal component analysis of the time series of hyperspectral cubes showed macromolecular pool variations (carbohydrates, lipids and DNA/RNA) of less than 2% after fringe correction

    Time-resolved spectroscopy using synchrotron infrared pulses

    Get PDF
    Electron synchrotron storage rings, such as the VUV ring at the National Synchrotron Light Source (NSLS), produce short pulses of infrared (IR) radiation suitable for investigating the time-dependent phenomena in a variety of interesting experimental systems. In contrast to other pulses sources of IR, the synchrotron produces a continuum spectral output over the entire IR (and beyond), though at power levels typically below those obtained from laser systems. The infrared synchrotron radiation (IRSR) source is therefore well-suited as a probe using standard FTIR spectroscopic techniques. Here the authors describe the pump-probe spectroscopy facility being established at the NSLS and demonstrate the technique by measuring the photocarrier decay in a semiconductor

    Inhibition of diacylglycerol lipase beta modulates lipid and endocannabinoid levels in the ex vivo human placenta

    Get PDF
    IntroductionLipids and fatty acids are key components in metabolic processes of the human placenta, thereby contributing to the development of the fetus. Placental dyslipidemia and aberrant activity of lipases have been linked to diverse pregnancy associated complications, such as preeclampsia and preterm birth. The serine hydrolases, diacylglycerol lipase alpha and beta (DAGL alpha, DAGL beta) catalyze the degradation of diacylglycerols, leading to the formation of monoacylglycerols (MAG), including one main endocannabinoid 2-arachidonoylglycerol (2-AG). The major role of DAGL in the biosynthesis of 2-AG is evident from various studies in mice but has not been investigated in the human placenta. Here, we report the use of the small molecule inhibitor DH376, in combination with the ex vivo placental perfusion system, activity-based protein profiling (ABPP) and lipidomics, to determine the impact of acute DAGL inhibition on placental lipid networks. MethodsDAGL alpha and DAGL beta mRNA expression was detected by RT-qPCR and in situ hybridization in term placentas. Immunohistochemistry staining for CK7, CD163 and VWF was applied to localize DAGL beta transcripts to different cell types of the placenta. DAGL beta activity was determined by in- gel and MS-based activity-based protein profiling (ABPP) and validated by addition of the enzyme inhibitors LEI-105 and DH376. Enzyme kinetics were measured by EnzChek (TM) lipase substrate assay. Ex vivo placental perfusion experiments were performed +/- DH376 [1 mu M] and changes in tissue lipid and fatty acid profiles were measured by LC-MS. Additionally, free fatty acid levels of the maternal and fetal circulations were determined. ResultsWe demonstrate that mRNA expression of DAGL beta prevails in placental tissue, compared to DAGL alpha (p <= 0.0001) and that DAGL beta is mainly located to CK7 positive trophoblasts (p <= 0.0001). Although few DAGL alpha transcripts were identified, no active enzyme was detected applying in-gel or MS-based ABPP, which underlined that DAGL beta is the principal DAGL in the placenta. DAGL beta dependent substrate hydrolysis in placental membrane lysates was determined by the application of LEI-105 and DH376. Ex vivo pharmacological inhibition of DAGL beta by DH376 led to reduced MAG tissue levels (p <= 0.01), including 2-AG (p <= 0.0001). We further provide an activity landscape of serine hydrolases, showing a broad spectrum of metabolically active enzymes in the human placenta. DiscussionOur results emphasize the role of DAGL beta activity in the human placenta by determining the biosynthesis of 2-AG. Thus, this study highlights the special importance of intra-cellular lipases in lipid network regulation. Together, the activity of these specific enzymes may contribute to the lipid signaling at the maternal-fetal interface, with implications for function of the placenta in normal and compromised pregnancies.Molecular Physiolog

    LPS-responsive beige-like anchor gene mutation associated with possible bronchiolitis obliterans organizing pneumonia associated with hypogammaglobulinemia and normal IgM phenotype and low number of B

    Get PDF
    LPS-Responsive Beige-like Anchor (LRBA) deficiency is a disease which has recently been described in a group of patients with common variable immunodeficiency (CVID) in association with autoimmunity and/or inflammatory bowel disease (IBD)-like phenotype. We here describe a 10-year-old boy who experienced recurrent infections, mainly in the respiratory system, associated with thrombocytopenia and anemia. Immunological workup showed low numbers of B cells and low IgG, but normal IgM levels. In spite of therapeutic doses of antibiotics, antivirals, and antifungal agents, in addition to immunoglobulin replacement therapy, he developed disseminated involvement of both lungs with peripheral nodules; transbronchial lung biopsy revealed possible bronchiolitis obliterans organizing pneumonia (BOOP). Combined homozygosity mapping and exome sequencing identified a homozygous LRBA mutation in this patient (p.Asp248Glufs * 2). Such clinical and immunological findings have not been described to date and illustrate the broad and variable clinical phenotype of human LRBA deficiency. © 2016 Tehran University of Medical Sciences. All rights reserved

    Characterization of the Clinical and Immunologic Phenotype and Management of 157 Individuals with 56 Distinct Heterozygous NFKB1 Mutations

    Get PDF
    Background: An increasing number of NFKB1 variants are being identified in patients with heterogeneous immunologic phenotypes. Objective: To characterize the clinical and cellular phenotype as well as the management of patients with heterozygous NFKB1 mutations. Methods: In a worldwide collaborative effort, we evaluated 231 individuals harboring 105 distinct heterozygous NFKB1 variants. To provide evidence for pathogenicity, each variant was assessed in silico; in addition, 32 variants were assessed by functional in vitro testing of nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB) signaling. Results: We classified 56 of the 105 distinct NFKB1 variants in 157 individuals from 68 unrelated families as pathogenic. Incomplete clinical penetrance (70%) and age-dependent severity of NFKB1-related phenotypes were observed. The phenotype included hypogammaglobulinemia (88.9%), reduced switched memory B cells (60.3%), and respiratory (83%) and gastrointestinal (28.6%) infections, thus characterizing the disorder as primary immunodeficiency. However, the high frequency of autoimmunity (57.4%), lymphoproliferation (52.4%), noninfectious enteropathy (23.1%), opportunistic infections (15.7%), autoinflammation (29.6%), and malignancy (16.8%) identified NF-κB1-related disease as an inborn error of immunity with immune dysregulation, rather than a mere primary immunodeficiency. Current treatment includes immunoglobulin replacement and immunosuppressive agents. Conclusions: We present a comprehensive clinical overview of the NF-κB1-related phenotype, which includes immunodeficiency, autoimmunity, autoinflammation, and cancer. Because of its multisystem involvement, clinicians from each and every medical discipline need to be made aware of this autosomal-dominant disease. Hematopoietic stem cell transplantation and NF-κB1 pathway-targeted therapeutic strategies should be considered in the future.info:eu-repo/semantics/publishedVersio

    CD39 abrogates platelet-derived factors induced IL-1β expression in the human placenta

    Get PDF
    Tissue insults in response to inflammation, hypoxia and ischemia are accompanied by the release of ATP into the extracellular space. There, ATP modulates several pathological processes, including chemotaxis, inflammasome induction and platelet activation. ATP hydrolysis is significantly enhanced in human pregnancy, suggesting that increased conversion of extracellular ATP is an important anti-inflammatory process in preventing exaggerated inflammation, platelet activation and hemostasis in gestation. Extracellular ATP is converted into AMP, and subsequently into adenosine by the two major nucleotide-metabolizing enzymes CD39 and CD73. Here, we aimed to elucidate developmental changes of placental CD39 and CD73 over gestation, compared their expression in placental tissue from patients with preeclampsia and healthy controls, and analyzed their regulation in response to platelet-derived factors and different oxygen conditions in placental explants as well as the trophoblast cell line BeWo. Linear regression analysis showed a significant increase in placental CD39 expression, while at the same time CD73 levels declined at term of pregnancy. Neither maternal smoking during first trimester, fetal sex, maternal age, nor maternal BMI revealed any effects on placental CD39 and CD73 expression. Immunohistochemistry detected both, CD39 and CD73, predominantly in the syncytiotrophoblast layer. Placental CD39 and CD73 expression were significantly increased in pregnancies complicated with preeclampsia, when compared to controls. Cultivation of placental explants under different oxygen conditions had no effect on the ectonucleotidases, whereas presence of platelet releasate from pregnant women led to deregulated CD39 expression. Overexpression of recombinant human CD39 in BeWo cells decreased extracellular ATP levels after culture in presence of platelet-derived factors. Moreover, platelet-derived factors-induced upregulation of the pro-inflammatory cytokine, interleukin-1β, was abolished by CD39 overexpression. Our study shows that placental CD39 is upregulated in preeclampsia, suggesting an increasing demand for extracellular ATP hydrolysis at the utero-placental interface. Increased placental CD39 in response to platelet-derived factors may lead to enhanced conversion of extracellular ATP levels, which in turn could represent an important anti-coagulant defense mechanism of the placenta
    corecore