2,325 research outputs found

    Novel self-assembled morphologies from isotropic interactions

    Get PDF
    We present results from particle simulations with isotropic medium range interactions in two dimensions. At low temperature novel types of aggregated structures appear. We show that these structures can be explained by spontaneous symmetry breaking in analytic solutions to an adaptation of the spherical spin model. We predict the critical particle number where the symmetry breaking occurs and show that the resulting phase diagram agrees well with results from particle simulations.Comment: 4 pages, 4 figure

    XMM-Newton observations of HESS J1813-178 reveal a composite Supernova remnant

    Get PDF
    We present X-ray and 12CO(J=1-0) observations of the very-high-energy (VHE) gamma-ray source HESS J1813-178 with the aim of understanding the origin of the gamma-ray emission. Using this dataset we are able to undertake spectral and morphological studies of the X-ray emission from this object with greater precision than previous studies. NANTEN 12CO(J=1-0) data are used to search for correlations of the gamma-ray emission with molecular clouds which could act as target material for gamma-ray production in a hadronic scenario. The NANTEN 12CO(J=1-0) observations show a giant molecular cloud of mass 2.5 10^5 M_{\sun} at a distance of 4 kpc in the vicinity of HESS J1813-178. Even though there is no direct positional coincidence, this giant cloud might have influenced the evolution of the gamma-ray source and its surroundings. The X-ray data show a highly absorbed non-thermal X-ray emitting object coincident with the previously known ASCA source AX J1813-178 showing a compact core and an extended tail towards the north-east, located in the centre of the radio shell-type Supernova remnant (SNR) G12.82-0.2. This central object shows morphological and spectral resemblance to a Pulsar Wind Nebula (PWN) and we therefore consider that the object is very likely to be a composite SNR. We discuss the scenario in which the gamma-rays originate in the shell of the SNR and the one in which they originate in the central object. We demonstrate, that in order to connect the core X-ray emission to the VHE gamma-ray emission electrons have to be accelerated to energies of at least 1 PeV.Comment: Submitted to A&

    A Review of the ACID Synthetic Aperture Sonar and other Sidescan Sonar Systems

    Get PDF
    The ACID project was part of the MAST Programme and was funded by the European Communities, to develop a synthetic aperture sonar for high resolution mapping of the seafloor. The collaboration of several European Institutions has enabled the ACID synthetic aperture sonar to be developed and tested during sea trials in May 1993. This paper discusses how the ACID synthetic aperture sonar system fits into the existing field of conventional sidescan sonar systems and the potential advantages to be gained using synthetic aperture processing techniques. The main advantage of the ACID sonar is that its azimuth resolution is independent of range and of the transmitted signal frequency. Sonar designers can, therefore, use lower operating frequencies and still obtain high azimuth resolutions. However, this paper also highlights the need for developing techniques which can increase the area mapping rate of synthetic aperture sonars which is essentially limited by the azimuth sampling constraint. Images from sea trials during May 1993 are presented which show areas of the seafloor before and after synthetic aperture sonar processing

    A search for VHE counterparts of Galactic Fermi bright sources and MeV to TeV spectral characterization

    Full text link
    Very high-energy (VHE; E>100 GeV) gamma-rays have been detected from a wide range of astronomical objects, such as pulsar wind nebulae (PWNe), supernova remnants (SNRs), giant molecular clouds, gamma-ray binaries, the Galactic Center, active galactic nuclei (AGN), radio galaxies, starburst galaxies, and possibly star-forming regions as well. At lower energies, observations using the Large Area Telescope (LAT) onboard Fermi provide a rich set of data which can be used to study the behavior of cosmic accelerators in the MeV to TeV energy bands. In particular, the improved angular resolution of current telescopes in both bands compared to previous instruments significantly reduces source confusion and facilitates the identification of associated counterparts at lower energies. In this paper, a comprehensive search for VHE gamma-ray sources which are spatially coincident with Galactic Fermi/LAT bright sources is performed, and the available MeV to TeV spectra of coincident sources are compared. It is found that bright LAT GeV sources are correlated with TeV sources, in contrast to previous studies using EGRET data. Moreover, a single spectral component seems unable to describe the MeV to TeV spectra of many coincident GeV/TeV sources. It has been suggested that gamma-ray pulsars may be accompanied by VHE gamma-ray emitting nebulae, a hypothesis that can be tested with VHE observations of these pulsars.Comment: Astronomy and Astrophysics, in press, 17 pages, 12 figures, 5 table

    A Theory of Cheap Control in Embodied Systems

    Full text link
    We present a framework for designing cheap control architectures for embodied agents. Our derivation is guided by the classical problem of universal approximation, whereby we explore the possibility of exploiting the agent's embodiment for a new and more efficient universal approximation of behaviors generated by sensorimotor control. This embodied universal approximation is compared with the classical non-embodied universal approximation. To exemplify our approach, we present a detailed quantitative case study for policy models defined in terms of conditional restricted Boltzmann machines. In contrast to non-embodied universal approximation, which requires an exponential number of parameters, in the embodied setting we are able to generate all possible behaviors with a drastically smaller model, thus obtaining cheap universal approximation. We test and corroborate the theory experimentally with a six-legged walking machine. The experiments show that the sufficient controller complexity predicted by our theory is tight, which means that the theory has direct practical implications. Keywords: cheap design, embodiment, sensorimotor loop, universal approximation, conditional restricted Boltzmann machineComment: 27 pages, 10 figure

    Inner Space Preserving Generative Pose Machine

    Full text link
    Image-based generative methods, such as generative adversarial networks (GANs) have already been able to generate realistic images with much context control, specially when they are conditioned. However, most successful frameworks share a common procedure which performs an image-to-image translation with pose of figures in the image untouched. When the objective is reposing a figure in an image while preserving the rest of the image, the state-of-the-art mainly assumes a single rigid body with simple background and limited pose shift, which can hardly be extended to the images under normal settings. In this paper, we introduce an image "inner space" preserving model that assigns an interpretable low-dimensional pose descriptor (LDPD) to an articulated figure in the image. Figure reposing is then generated by passing the LDPD and the original image through multi-stage augmented hourglass networks in a conditional GAN structure, called inner space preserving generative pose machine (ISP-GPM). We evaluated ISP-GPM on reposing human figures, which are highly articulated with versatile variations. Test of a state-of-the-art pose estimator on our reposed dataset gave an accuracy over 80% on PCK0.5 metric. The results also elucidated that our ISP-GPM is able to preserve the background with high accuracy while reasonably recovering the area blocked by the figure to be reposed.Comment: http://www.northeastern.edu/ostadabbas/2018/07/23/inner-space-preserving-generative-pose-machine

    Local and global Fokker-Planck neoclassical calculations showing flow and bootstrap current modification in a pedestal

    Full text link
    In transport barriers, particularly H-mode edge pedestals, radial scale lengths can become comparable to the ion orbit width, causing neoclassical physics to become radially nonlocal. In this work, the resulting changes to neoclassical flow and current are examined both analytically and numerically. Steep density gradients are considered, with scale lengths comparable to the poloidal ion gyroradius, together with strong radial electric fields sufficient to electrostatically confine the ions. Attention is restricted to relatively weak ion temperature gradients (but permitting arbitrary electron temperature gradients), since in this limit a delta-f (small departures from a Maxwellian distribution) rather than full-f approach is justified. This assumption is in fact consistent with measured inter-ELM H-Mode edge pedestal density and ion temperature profiles in many present experiments, and is expected to be increasingly valid in future lower collisionality experiments. In the numerical analysis, the distribution function and Rosenbluth potentials are solved for simultaneously, allowing use of the exact field term in the linearized Fokker-Planck collision operator. In the pedestal, the parallel and poloidal flows are found to deviate strongly from the best available conventional neoclassical prediction, with large poloidal variation of a different form than in the local theory. These predicted effects may be observable experimentally. In the local limit, the Sauter bootstrap current formulae appear accurate at low collisionality, but they can overestimate the bootstrap current near the plateau regime. In the pedestal ordering, ion contributions to the bootstrap and Pfirsch-Schluter currents are also modified
    • …
    corecore