2,326 research outputs found

    The electroclinic effect and modulated phases in smectic liquid crystals

    Full text link
    We explore the possibility that the large electroclinic effect observed in ferroelectric liquid crystals arises from the presence of an ordered array of disclination lines and walls. If the spacing of these defects is in the subvisible range, this modulated phase would be similar macroscopically to a smectic A phase. The application of an electric field distorts the array, producing a large polarization, and hence a large electroclinic effect. We show that with suitable elastic parameters and sufficiently large chirality, the modulated phase is favored over the smectic A and helically twisted smectic C* phases. We propose various experimental tests of this scenario.Comment: 9 pages, 7 figures; new version includes dipolar interactions and bend-twist couplin

    Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Angular Power Spectra

    Get PDF
    We present the temperature and polarization angular power spectra of the cosmic microwave background (CMB) derived from the first 5 years of WMAP data. The 5-year temperature (TT) spectrum is cosmic variance limited up to multipole l=530, and individual l-modes have S/N>1 for l<920. The best fitting six-parameter LambdaCDM model has a reduced chi^2 for l=33-1000 of chi^2/nu=1.06, with a probability to exceed of 9.3%. There is now significantly improved data near the third peak which leads to improved cosmological constraints. The temperature-polarization correlation (TE) is seen with high significance. After accounting for foreground emission, the low-l reionization feature in the EE power spectrum is preferred by \Delta\chi^2=19.6 for optical depth tau=0.089 by the EE data alone, and is now largely cosmic variance limited for l=2-6. There is no evidence for cosmic signal in the BB, TB, or EB spectra after accounting for foreground emission. We find that, when averaged over l=2-6, l(l+1)C^{BB}_l/2\pi < 0.15 uK^2 (95% CL).Comment: 29 pages, 13 figures, accepted by ApJ

    Cross-Correlation Detection of Point Sources in WMAP First Year Data

    Get PDF
    We apply a Cross-correlation (CC) method developed previously for detecting gamma-ray point sources to the WMAP first year data by using the Point-Spread Function of WMAP and obtain a full sky CC coefficient map. Analyzing this map, we find that the CC method is a powerful tool to examine the WMAP foreground residuals which can be further cleaned accordingly. Evident foreground signals are found in WMAP foreground cleaned maps and Tegmark cleaned map. In this process 101 point-sources are detected, and 26 of them are new sources besides the originally listed WMAP 208 sources. We estimate the flux of these new sources and verify them by another method. As a result, a revised mask file based on the WMAP first year data is produced by including these new sources.Comment: 14 pages, 10 figures; accepted for publication by ChJA

    Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Are There Cosmic Microwave Background Anomalies?

    Get PDF
    (Abridged) A simple six-parameter LCDM model provides a successful fit to WMAP data, both when the data are analyzed alone and in combination with other cosmological data. Even so, it is appropriate to search for any hints of deviations from the now standard model of cosmology, which includes inflation, dark energy, dark matter, baryons, and neutrinos. The cosmological community has subjected the WMAP data to extensive and varied analyses. While there is widespread agreement as to the overall success of the six-parameter LCDM model, various "anomalies" have been reported relative to that model. In this paper we examine potential anomalies and present analyses and assessments of their significance. In most cases we find that claimed anomalies depend on posterior selection of some aspect or subset of the data. Compared with sky simulations based on the best fit model, one can select for low probability features of the WMAP data. Low probability features are expected, but it is not usually straightforward to determine whether any particular low probability feature is the result of the a posteriori selection or of non-standard cosmology. We examine in detail the properties of the power spectrum with respect to the LCDM model. We examine several potential or previously claimed anomalies in the sky maps and power spectra, including cold spots, low quadrupole power, quadropole-octupole alignment, hemispherical or dipole power asymmetry, and quadrupole power asymmetry. We conclude that there is no compelling evidence for deviations from the LCDM model, which is generally an acceptable statistical fit to WMAP and other cosmological data.Comment: 19 pages, 17 figures, also available with higher-res figures on http://lambda.gsfc.nasa.gov; accepted by ApJS; (v2) text as accepte

    Phantom Energy Accretion by Stringy Charged Black Hole

    Full text link
    We investigate the dynamical behavior of phantom energy near stringy magnetically charged black hole. For this purpose, we derive equations of motion for steady-state spherically symmetric flow of phantom energy onto the stringy magnetically charged black hole. It is found that phantom energy accreting onto black hole decreases its mass. Further, the location of critical points of accretion is explored, which yields mass to charge ratio. This ratio implies that accretion process cannot transform a black hole into an extremal black hole or a naked singularity, hence cosmic censorship hypothesis remains valid here.Comment: 7 pages, no figur

    Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results

    Full text link
    (Abridged) New full sky temperature and polarization maps based on seven years of data from WMAP are presented. The new results are consistent with previous results, but have improved due to reduced noise from the additional integration time, improved knowledge of the instrument performance, and improved data analysis procedures. The improvements are described in detail. The seven year data set is well fit by a minimal six-parameter flat Lambda-CDM model. The parameters for this model, using the WMAP data in conjunction with baryon acoustic oscillation data from the Sloan Digital Sky Survey and priors on H_0 from Hubble Space Telescope observations, are: Omega_bh^2 = 0.02260 +-0.00053, Omega_ch^2 = 0.1123 +-0.0035, Omega_Lambda = 0.728 +0.015 -0.016, n_s = 0.963 +-0.012, tau = 0.087 +-0.014 and sigma_8 = 0.809 +-0.024 (68 % CL uncertainties). The temperature power spectrum signal-to-noise ratio per multipole is greater that unity for multipoles < 919, allowing a robust measurement of the third acoustic peak. This measurement results in improved constraints on the matter density, Omega_mh^2 = 0.1334 +0.0056 -0.0055, and the epoch of matter- radiation equality, z_eq = 3196 +134 -133, using WMAP data alone. The new WMAP data, when combined with smaller angular scale microwave background anisotropy data, results in a 3 sigma detection of the abundance of primordial Helium, Y_He = 0.326 +-0.075.The power-law index of the primordial power spectrum is now determined to be n_s = 0.963 +-0.012, excluding the Harrison-Zel'dovich-Peebles spectrum by >3 sigma. These new WMAP measurements provide important tests of Big Bang cosmology.Comment: 42 pages, 9 figures, Submitted to Astrophysical Journal Supplement Serie

    Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Bayesian Estimation of CMB Polarization Maps

    Get PDF
    We describe a sampling method to estimate the polarized CMB signal from observed maps of the sky. We use a Metropolis-within-Gibbs algorithm to estimate the polarized CMB map, containing Q and U Stokes parameters at each pixel, and its covariance matrix. These can be used as inputs for cosmological analyses. The polarized sky signal is parameterized as the sum of three components: CMB, synchrotron emission, and thermal dust emission. The polarized Galactic components are modeled with spatially varying power law spectral indices for the synchrotron, and a fixed power law for the dust, and their component maps are estimated as by-products. We apply the method to simulated low resolution maps with pixels of side 7.2 degrees, using diagonal and full noise realizations drawn from the WMAP noise matrices. The CMB maps are recovered with goodness of fit consistent with errors. Computing the likelihood of the E-mode power in the maps as a function of optical depth to reionization, tau, for fixed temperature anisotropy power, we recover tau=0.091+-0.019 for a simulation with input tau=0.1, and mean tau=0.098 averaged over 10 simulations. A `null' simulation with no polarized CMB signal has maximum likelihood consistent with tau=0. The method is applied to the five-year WMAP data, using the K, Ka, Q and V channels. We find tau=0.090+-0.019, compared to tau=0.086+-0.016 from the template-cleaned maps used in the primary WMAP analysis. The synchrotron spectral index, beta, averaged over high signal-to-noise pixels with standard deviation sigma(beta)<0.25, but excluding ~6% of the sky masked in the Galactic plane, is -3.03+-0.04. This estimate does not vary significantly with Galactic latitude, although includes an informative prior.Comment: 11 pages, 9 figures, matches version accepted by Ap

    Statistical Isotropy violation of the CMB brightness fluctuations

    Full text link
    Certain anomalies at large angular scales in the cosmic microwave background measured by WMAP have been suggested as possible evidence of breakdown of statistical isotropy(SI). Most CMB photons free-stream to the present from the surface of last scattering. It is thus reasonable to expect statistical isotropy violation in the CMB photon distribution observed now to have originated from SI violation in the baryon-photon fluid at last scattering, in addition to anisotropy of the primordial power spectrum studied earlier in literature. We consider the generalized anisotropic brightness distribution fluctuations, Δ(k,n^,τ)\Delta(\vec{k}, \hat{n}, \tau) (at conformal time τ\tau) in contrast to the SI case where it is simply a function of k|\vec{k}| and k^n^\hat{k} \cdot \hat{n}. The brightness fluctuations expanded in Bipolar Spherical Harmonic (BipoSH) series, can then be written as Δ12LM(k,τ)\Delta_{\ell_1 \ell_2}^{L M}(\vec{k}, \tau) where L>0L > 0 terms encode deviations from statistical isotropy. We study the evolution of Δ12LM(k,τ)\Delta_{\ell_1 \ell_2}^{L M}(\vec{k}, \tau) from non-zero terms Δ34LM(k,τs)\Delta_{\ell_3 \ell_4}^{L M}(\vec{k}, \tau_s) at last scattering. Similar to the SI case, power at small spherical harmonic (SH) multipoles of Δ34LM(k,τs)\Delta_{\ell_3 \ell_4}^{L M}(\vec{k},\tau_s) at the last scattering, is transferred to Δ12LM(k,τ)\Delta_{\ell_1 \ell_2}^{L M}(\vec{k}, \tau) at larger SH multipoles. The structural similarity is more apparent in the asymptotic expression for large values of the final SH multipoles. This formalism allows an elegant identification of any SI violation observed today to a possible origin in the SI violation present in the baryon-photon fluid (eg., due to the presence of significant magnetic field).Comment: 14 pages, 4 figures, added illustrative example of SI violation in baryon-photon fluid, matches version accepted for publication in Phys. Rev.

    NCLB technology and a rural school: A case study

    Get PDF
    The requirements of the No Child Left Behind Act of 2001 (NCLB) have presented special challenges and opportunities for rural schools (Reeves, 2003). Researchers have suggested that one way rural schools may be able to overcome these challenges is through an increase in the level of technology integration in their school (Collins & Dewees, 2001). This case study reports on one school’s attempt to use grant resources funded through NCLB to integrate specific instructional technologies to facilitate increased student achievement. Through interviews and observations, the roles, attitudes, and difficulties of teachers and administrators in implementing a technology initiative in a rural middle school were observed, examined and discussed. Emerging themes included issues related to teacher ownership of the technology, teacher feelings of power and participation, differing goals of teachers and administrators, technical difficulties, school wide support, and changes in school culture
    corecore