282 research outputs found

    Amino acids precursors in lunar finds

    Get PDF
    The consistent pattern is discussed of amino acids found in lunar dust from Apollo missions. The evidence indicates that compounds yielding amino acids were implanted into the surface of the moon by the solar wind, and the kind and amounts of amino acids found on the moon are closely similar to those found in meteorites. It is concluded that there is a common cosmochemical pattern for the moom and meteorites, and this offers evidence of a common course of cosmochemical reactions for carbon

    Traffic jams induced by rare switching events in two-lane transport

    Get PDF
    We investigate a model for driven exclusion processes where internal states are assigned to the particles. The latter account for diverse situations, ranging from spin states in spintronics to parallel lanes in intracellular or vehicular traffic. Introducing a coupling between the internal states by allowing particles to switch from one to another induces an intriguing polarization phenomenon. In a mesoscopic scaling, a rich stationary regime for the density profiles is discovered, with localized domain walls in the density profile of one of the internal states being feasible. We derive the shape of the density profiles as well as resulting phase diagrams analytically by a mean-field approximation and a continuum limit. Continuous as well as discontinuous lines of phase transition emerge, their intersections induce multi-critical behaviour

    Direct observation of the tube model in F-actin solutions

    Get PDF
    Mutual uncrossability of polymers generates topological constraints on their conformations and dynamics, which are generally described using the tube model. We imaged confinement tubes for individual polymers within a F-actin solution by sampling over many successive micrographs of fluorescently labeled probe filaments. The resulting average tube width shows the predicted scaling behavior. Unexpectedly, we found an exponential distribution of tube curvatures which is attributed to transient entropic trapping in network void spaces.Comment: 6 pages, 4 figure

    Molecular Spiders in One Dimension

    Full text link
    Molecular spiders are synthetic bio-molecular systems which have "legs" made of short single-stranded segments of DNA. Spiders move on a surface covered with single-stranded DNA segments complementary to legs. Different mappings are established between various models of spiders and simple exclusion processes. For spiders with simple gait and varying number of legs we compute the diffusion coefficient; when the hopping is biased we also compute their velocity.Comment: 14 pages, 2 figure

    Limited Lifespan of Fragile Regions in Mammalian Evolution

    Full text link
    An important question in genome evolution is whether there exist fragile regions (rearrangement hotspots) where chromosomal rearrangements are happening over and over again. Although nearly all recent studies supported the existence of fragile regions in mammalian genomes, the most comprehensive phylogenomic study of mammals (Ma et al. (2006) Genome Research 16, 1557-1565) raised some doubts about their existence. We demonstrate that fragile regions are subject to a "birth and death" process, implying that fragility has limited evolutionary lifespan. This finding implies that fragile regions migrate to different locations in different mammals, explaining why there exist only a few chromosomal breakpoints shared between different lineages. The birth and death of fragile regions phenomenon reinforces the hypothesis that rearrangements are promoted by matching segmental duplications and suggests putative locations of the currently active fragile regions in the human genome

    Greedy Solution of Ill-Posed Problems: Error Bounds and Exact Inversion

    Full text link
    The orthogonal matching pursuit (OMP) is an algorithm to solve sparse approximation problems. Sufficient conditions for exact recovery are known with and without noise. In this paper we investigate the applicability of the OMP for the solution of ill-posed inverse problems in general and in particular for two deconvolution examples from mass spectrometry and digital holography respectively. In sparse approximation problems one often has to deal with the problem of redundancy of a dictionary, i.e. the atoms are not linearly independent. However, one expects them to be approximatively orthogonal and this is quantified by the so-called incoherence. This idea cannot be transfered to ill-posed inverse problems since here the atoms are typically far from orthogonal: The ill-posedness of the operator causes that the correlation of two distinct atoms probably gets huge, i.e. that two atoms can look much alike. Therefore one needs conditions which take the structure of the problem into account and work without the concept of coherence. In this paper we develop results for exact recovery of the support of noisy signals. In the two examples in mass spectrometry and digital holography we show that our results lead to practically relevant estimates such that one may check a priori if the experimental setup guarantees exact deconvolution with OMP. Especially in the example from digital holography our analysis may be regarded as a first step to calculate the resolution power of droplet holography

    Effect of molecular and electronic structure on the light harvesting properties of dye sensitizers

    Get PDF
    The systematic trends in structural and electronic properties of perylene diimide (PDI) derived dye molecules have been investigated by DFT calculations based on projector augmented wave (PAW) method including gradient corrected exchange-correlation effects. TDDFT calculations have been performed to study the visible absorbance activity of these complexes. The effect of different ligands and halogen atoms attached to PDI were studied to characterize the light harvesting properties. The atomic size and electronegativity of the halogen were observed to alter the relaxed molecular geometries which in turn influenced the electronic behavior of the dye molecules. Ground state molecular structure of isolated dye molecules studied in this work depends on both the halogen atom and the carboxylic acid groups. DFT calculations revealed that the carboxylic acid ligands did not play an important role in changing the HOMO-LUMO gap of the sensitizer. However, they serve as anchor between the PDI and substrate titania surface of the solar cell or photocatalyst. A commercially available dye-sensitizer, ruthenium bipyridine (RuBpy), was also studied for electronic and structural properties in order to make a comparison with PDI derivatives for light harvesting properties. Results of this work suggest that fluorinated, chlorinated, brominated, and iyodinated PDI compounds can be useful as sensitizers in solar cells and in artificial photosynthesis.Comment: Single pdf file, 14 pages with 7 figures and 4 table

    Close 3D proximity of evolutionary breakpoints argues for the notion of spatial synteny

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Folding and intermingling of chromosomes has the potential of bringing close to each other loci that are very distant genomically or even on different chromosomes. On the other hand, genomic rearrangements also play a major role in the reorganisation of loci proximities. Whether the same loci are involved in both mechanisms has been studied in the case of somatic rearrangements, but never from an evolutionary standpoint.</p> <p>Results</p> <p>In this paper, we analysed the correlation between two datasets: (i) whole-genome chromatin contact data obtained in human cells using the Hi-C protocol; and (ii) a set of breakpoint regions resulting from evolutionary rearrangements which occurred since the split of the human and mouse lineages. Surprisingly, we found that two loci distant in the human genome but adjacent in the mouse genome are significantly more often observed in close proximity in the human nucleus than expected. Importantly, we show that this result holds for loci located on the same chromosome regardless of the genomic distance separating them, and the signal is stronger in gene-rich and open-chromatin regions.</p> <p>Conclusions</p> <p>These findings strongly suggest that part of the 3D organisation of chromosomes may be conserved across very large evolutionary distances. To characterise this phenomenon, we propose to use the notion of spatial synteny which generalises the notion of genomic synteny to the 3D case.</p

    Dye molecules in electrolytes: new approach for suppression of dye-desorption in dye-sensitized solar cells

    Get PDF
    The widespread commercialization of dye-sensitized solar cells remains limited because of the poor long-term stability. We report on the influence of dye-molecules added in liquid electrolyte on long-term stability of dye-sensitized solar cells. Dye-desorption from the TiO2 surface during long-term cycling is one of the decisive factors that degrade photocurrent densities of devices which in turn determine the efficiencies of the devices. For the first time, desorption of dye from the TiO2 surface could be suppressed by controlling thermodynamic equilibrium; by addition of dye molecules in the electrolyte. The dye molecules in the electrolyte can suppress the driving forces for the adsorbed dye molecules to be desorbed from TiO2 nanoparticles. As a result, highly enhanced device stabilities were achieved due to the reduction of dye-desorption although there was a little decrease in the initial efficiencies.open4

    The Use of Anti-VDAC2 Antibody for the Combined Assessment of Human Sperm Acrosome Integrity and Ionophore A23187-Induced Acrosome Reaction

    Get PDF
    Voltage-dependent anion channel (VDAC) is mainly located in the mitochondrial outer membrane and participates in many biological processes. In mammals, three VDAC subtypes (VDAC1, 2 and 3) have been identified. Although VDAC has been extensively studied in various tissues and cells, there is little knowledge about the distribution and function of VDAC in male mammalian reproductive system. Several studies have demonstrated that VDAC exists in mammalian spermatozoa and is implicated in spermatogenesis, sperm maturation, motility and fertilization. However, there is no knowledge about the respective localization and function of three VDAC subtypes in human spermatozoa. In this study, we focused on the presence of VDAC2 in human spermatozoa and its possible role in the acrosomal integrity and acrosome reaction using specific anti-VDAC2 monoclonal antibody for the first time. The results exhibited that native VDAC2 existed in the membrane components of human spermatozoa. The co-incubation of spermatozoa with anti-VDAC2 antibody did not affect the acrosomal integrity and acrosome reaction, but inhibited ionophore A23187-induced intracellular Ca2+ increase. Our study suggested that VDAC2 was located in the acrosomal membrane or plasma membrane of human spermatozoa, and played putative roles in sperm functions through mediating Ca2+ transmembrane transport
    • 

    corecore