630 research outputs found

    Predominant Magnetic States in Hubbard Model on Anisotropic Triangular Lattices

    Full text link
    Using an optimization variational Monte Carlo method, we study the half-filled-band Hubbard model on anisotropic triangular lattices, as a continuation of the preceding study [J. Phys. Soc. Jpn 75, 074707 (2006)]. We introduce two new trial states: (i) A coexisting state of (\pi,\pi)-antiferromagnetic (AF) and a d-wave singlet gaps, in which we allow for a band renormalization effect, and (ii) a state with an AF order of 120^\circ spin structure. In both states, a first-order metal-to-insulator transition occurs at smaller U/t than that of the pure d-wave state. In insulating regimes, magnetic orders always exist; an ordinary (\pi,\pi)-AF order survives up to t'/t\sim 0.9 (U/t=12), and a 120^\circ-AF order becomes dominant for t'/t \gsim 0.9. The regimes of the robust superconductor and of the nonmagnetic insulator the preceding study proposed give way to these magnetic domains.Comment: 11 pages, 14 figure

    Achieving a Stable Magneto-Optical Trap

    Get PDF
    The utilization of the Magneto-Optical Trap (MOT) as a method for cooling and confining atoms is a recent development in the field of modern optical physics. Producing an effective MOT relies on a constant magnetic field throughout the trapping region and successful laser cooling, a technique used to achieve optical molasses by slowing particles using a three-dimensional intersection of laser beams. A successful MOT occurs when the trapped atoms slow down to approximately 30 cm/s at a temperature in the microkelvin range and is observable when a small bright orb of atoms is located in the center of the chamber. In this endeavor, the experimental setup for achieving a stable MOT was established using an array of infrared lasers provided by MogLabs. Future work on this project should seek to capture an image of trapped rubidium atoms using the ColdQuanta MiniMOT using the kit’s black and white CCD camera. Successfully establishing this MOT allows for further testing to optimize its effectiveness and can be applied in future experiments aimed at achieving Bose-Einstein Condensation

    Web Based Expert System for i-Faraid

    Get PDF
    Expert system is one of the important Artificial Intelligence application. The design of the web based expert system for Islamic inheritance laws are different from conventional computer programs as they can solve problems by mimicking human reasoning, relying on logic, belief , rules of thumb, opinion and experience in Faraid. This thesis discusses web based expert system for Islamic inheritance law for all Muslims, and identify the rules of wealth distribution as stated in the Quran through a knowledge acquisition process with an expert in Faraid

    (η6-Benzene)(2,2′-bipyridine-κ2 N,N′)chloridoruthenium(II) chloride methanol sesquisolvate

    Get PDF
    In the title compound, [RuCl(C6H6)(C10H8N2)]Cl·1.5CH4O, the RuII atom is in a distorted octa­hedral environment coordinated by an η6-benzene ring, a chelating 2,2′-bipyridine ligand and a chloride ion. The asymmetric unit is completed by a chloride anion and two methanol mol­ecules, one of which is disordered about a centre of inversion with an occupancy of 0.5. It is an example of a ruthenium complex with a less sterically congested environment than in similar derivatives. In the crystal structure, O—H⋯Cl hydrogen bonds, together with π–π stacking inter­actions [centroid–centroid distances of 3.472Å(2) Å], stabilize the structure

    Pax3 synergizes with Gli2 and Zic1 in transactivating the Myf5 epaxial somite enhancer

    Get PDF
    AbstractBoth Glis, the downstream effectors of hedgehog signaling, and Zic transcription factors are required for Myf5 expression in the epaxial somite. Here we demonstrate a novel synergistic interaction between members of both families and Pax3, a paired-domain transcription factor that is essential for both myogenesis and neural crest development. We show that Pax3 synergizes with both Gli2 and Zic1 in transactivating the Myf5 epaxial somite (ES) enhancer in concert with the Myf5 promoter. This synergy is dependent on conserved functional domains of the proteins, as well as on a novel homeodomain motif in the Myf5 promoter and the essential Gli motif in the ES enhancer. Importantly, overexpression of Zic1 and Pax3 in the 10T1/2 mesodermal cell model results in enrichment of these factors at the endogenous Myf5 locus and induction of Myf5 expression. In our previous work, we showed that by enhancing nuclear translocation of Gli factors, Zics provide spatiotemporal patterning for Gli family members in the epaxial induction of Myf5 expression. Our current study indicates a complementary mechanism in which association with DNA-bound Pax3 strengthens the ability of both Zic1 and Gli2 to transactivate Myf5 in the epaxial somite

    Spontaneous deformation of the Fermi surface due to strong correlation in the two-dimensional t-J model

    Full text link
    Fermi surface of the two-dimensional t-J model is studied using the variational Monte Carlo method. We study the Gutzwiller projected d-wave superconducting state with an additional variational parameter t'_v corresponding to the next-nearest neighbor hopping term. It is found that the finite t'_v<0 gives the lowest variational energy in the wide range of hole-doping rates. The obtained momentum distribution function shows that the Fermi surface deforms spontaneously. It is also shown that the van Hove singularity is always located very close to the Fermi energy. Using the Gutzwiller approximation, we show that this spontaneous deformation is due to the Gutzwiller projection operator or the strong correlation.Comment: 4 pages, 3 eps figures, revte

    Superconducting states in frustrating t-J model: A model connecting high-TcT_c cuprates, organic conductors and Nax_xCoO2_2

    Full text link
    The two-dimensional t-J model on a frustrating lattice is studied using mean-field variational theories with Gutzwiller approximation. We find that a superconducting state with broken time-reversal symmetry (d+id state) is realized in the parameter region close to the triangular lattice. The frustration enlarges the region of superconductivity when t<0t<0 for the hole-doped case, which is equivalent to t>0t>0 for electron doping. We also discuss the SU(2) degeneracy at half-filling. The d+id state probably corresponds to the spin gap state at half-filling.Comment: 4 pages, 4 figure

    Large family cohorts of lymphoblastoid cells provide a new cellular model for investigating facioscapulohumeral muscular dystrophy

    Get PDF
    Facioscapulohumeral muscular dystrophy (FSHD) is associated with aberrant epigenetic regulation of the chromosome 4q35 D4Z4 macrosatellite repeat. The resulting DNA hypomethylation and relaxation of epigenetic repression leads to increased expression of the deleterious DUX4-fl mRNA encoded within the distal D4Z4 repeat. With the typical late onset of muscle weakness, prevalence of asymptomatic individuals, and an autosomal dominant mode of inheritance, FSHD is often passed on from one generation to the next and affects multiple individuals within a family. Here we have characterized unique collections of 114 lymphoblastoid cell lines (LCLs) generated from 12 multigenerational FSHD families, including 56 LCLs from large, genetically homogeneous families in Utah. We found robust expression of DUX4-fl in most FSHD LCLs and a good correlation between DNA hypomethylation and repeat length. In addition, DUX4-fl levels can be manipulated using epigenetic drugs as in myocytes, suggesting that some epigenetic pathways regulating DUX4-fl in myocytes are maintained in LCLs. Overall, these FSHD LCLs provide an alternative cellular model in which to study many aspects of D4Z4, DUX4, and FSHD gene regulation in a background of low genetic variation. Significantly, these non-adherent immortal LCLs are amenable for high-throughput screening of potential therapeutics targeting DUX4-fl mRNA or protein expression
    corecore