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Superconducting and pseudogap phases from scaling near a Van Hove singularity
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We study the corrections to the Fermi energy induced by the interactions in a two-dimensional electron
system, showing that it is attracted towards the Van Hove singularity for a certain range of doping levels. The
scaling of the Fermi level allows to cure the infrared singularities left in the BCS channel after renormalization
of the leading logarithm near the divergent density of states. A phaskwafve superconductivity arises
beyond the point of optimal doping corresponding to the peak of the superconducting instability. For lower
doping levels, the condensation of particle-hole pairs due to the nesting of the saddle-points takes over, leading
to the opening of a gap for quasiparticles in the neighborhood of the singular points.
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I. INTRODUCTION .
=3 [ dadplo¥ L, (0)W ()~ (e4(p)

The study of the electronic properties of the cuprates rep- "
resents nowadays a great challenge from the theoretical point #0)Y 26(P) W a6(P)]
of view, as the phenomenology of these materials has be- 4
come increasingly rich during the last decade. There have + > f dw;d?p;U(p1,p2.P3.P4) ¥ 1 (p1)
only been a few attempts to develop a theory that may en- abcd J =1

compass the main experimental featurés;luding the anti- XU (PP eor (Pa) W 4o (P3) 8(P1+ Pa— Pa— Pa)
ferromagnetism of the undoped compounds and the bo « 7
pseudogap phase above the superconducting transition. Ad- X (w1t wy— w3— wy),

ditionally, other proposals have focused on the mechanism of —
. X . where the indicea,b,c,d run over the two patches arouAd
superconductivity, stressing the role played by antiferromag-

~TF(tF 2t o2+ (t+ 2t ) p? -
netic fluctuationdor by the proximity to a VVan Hove singu- .and B, andsAvB.(p) + (L2t )p_x_(t__ 2t )py..Th.e scal
. : . ing transformation that leaves invariant the kinetic term of
larity (VHS) in the doped materiafs.

. . the action(at uo=0) is
The later approach has received much attention recently, (ato=0)

since it establishes a natural competition between magnetic w— S,

and superconducting instabilities in a two-dimensiof24b)

systenm'~8 The investigation of the model of electrons near a p—stp,

VHS is delicate due to the appearance of logarithmic diver-

gences in perturbation theory. In a renormalization group W op(p,0)—s W (pw).

(RG) framework, one has to handle infrared singularities thaj; is easily checked that, with the above transformation, the
arise after renormalizing away the leading logarithm, as thgnteraction term in the action is also scale invariant for a
energy dependence of some quantities comes in powers of @nstant value of the potentidl(p; ,p,,ps,p.). If this is not

logarithm squaré. constant, provided that it is a regular function of the argu-

Most part of the analyses of the problem have been madgents we can resort to an expansion in powers of the mo-
fixing the Fermi level at the VHS from the start. This ques-

tions the naturalness of the predicted instabilities, that rely B
critically on the proximity to the singular density of states.
The Fermi energy is actually a dynamical quantity that is
shifted by interaction effects. It has been shown that the VHS
has the tendency to attract the Fermi level of the electron

systemt®~#|t is therefore more appropriate to let the chemi- \
cal potential free to evolve as the states are integrated in the A
guantum theory. This also solves at once the problem of the
infrared divergences, as the shift of the chemical potential
from the VHS acts as an infrared cutoff in the logarithmic
dependences left in the renormalization.

We illustrate the above ideas in the case oftthe¢’ Hub-
bard model, which has a dispersion relation with saddle
points atA=(,0) andB=(0,7), as depicted in Fig. 1. We FIG. 1. Contour energy map for the-t’ model about the Van
consider then a model whose action at the classical level igHove filling.
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€ larger compensation of the pressure of partigigsexerted
by the reservoir. This is the kind of effect that lies in the
renormalization of the chemical potential, specially near a
VHS where the interaction strength depends implicitly on the
density of states.
A The renormalization of the chemical potential accounts
therefore for the reduction suffered by its effective value in
w the 2D system due to the repulsive interaction. This compu-
tational scheme produces the same results as the equivalent
but more physical picture in which, instead of the chemical
A Il(8) potential, the one-particle levels are renormalized to higher
energies by effect of the repulsive interaction. In this inter-
pretation, the shift of the levels depends again on the amount
of charge present in the system, in such a way that the Fermi
energy for the renormalized levels is bound to coincide with
the nominal chemical potential, of the reservoir. This pic-
ture is dual and completely equivalent to that adopted in our
computational framework, in which the chemical potential is
seen as renormalized in a system with unrenormalized one-
particle levels.

FIG. 2. Picture of the density of state¢e) and of the renor- The renormalization of the chemical potential has been
malization of the chemical potential by integration of states at the already nOt'Ceg in the general RG analysis of interacting fer-
energy cutoffA. mion systems? While, in the case of an isotropic dispersion

relation, this dependence @f(A) on the cutoff does not

menta. Only the constant term is significant, since the rest dfave physical significance, the situation is different in the

higher-order terms fade away upon scaling to the low-energgySteém under consideration since the charge integrated out at
limit s—0. Interactions with higher number of fields in the €ach RG step bears the nontrivial dependence of the density
of states near the VHS.

action are also irrelevant in that limit. This means that we ; . . ,
meet the first requirement to apply the RG program, that is tQ. The other important difference that introduces the Wilso-

ot . nian approach with respect to other RG analyses of the
have a mo<_jel that converges to a fixed-point under scalin odel is the significance that acquires the kinematics in the
transformations at the classical level.

) ) ) . . classification of the interaction channels. This has been one
We deal with a Wilsonian RG approach in which the otho main remarks made by Shankar in the application of

chemical potential is originally placed away from the gq echniques to interacting fermion systelhin the sim-
VHS, and electron modes in two thin slices about energiegest version, one reduces the problem to a finite number of
w+ A andu—A are progressively integrated out, as showncoyplings corresponding to channels with particular kinemat-
in Fig. 2. This approach assumes that the model is considerggs (the so-called forward-scattering, exchange and BCS
at fixed bare chemical potential, so that the statistical dechannels This may be considered as a first approximation to
scription is made in terms of the grand-canonical ensemblesapture the behavior of the interaction vertices, which repre-
The physical situation corresponds to the case in which thgent a manifold of couplings depending on the momenta of
system is in contact with a large reservoir of particles, thathe particles. Some attempts have been already made to in-
fixes the bare valugy of the chemical potential. corporate in a more refined way this functional dependence
An important feature of the Wilsonian approach is that theof the interaction within the RG approath.
progressive integration of the high-energy electron modes In what follows, we deal therefore with a RG scheme
leads to the reaccomodation of the Fermi level at each R@hich is appropriate for the electron system in contact with a
step, due to the self-energy corrections arising from the&harge reservoir, which sets the bare vajug of the en-
charge integrated out. In this computational framework, ongemble. The evolution of the Fermi level in a model describ-
adopts the picture in which the chemical potential depending the contact of a system near a VHS and a real charge
on the energy scald, in the reference frame in which the reservoir has been studied in Ref. 14. The results obtained
one-particle levels are held fixed. Then, the renormalizedelow with the RG approach are in agreement with those of
chemical potentials(A) can be thought as a quantity param- such a detailed analysis. Let us also remark that the consid-
etrizing the particle number in the system. eration of the system at fixed bare chemical potential may be
In general, in a closed system one does not assign anyost appropriate for the description of the Cu-O layers of the
physical meaning to the bare value of the chemical potentiakkuprate superconductors, as these may provide a practical
since it is just set to correspond, after renormalization by theealization of a low-dimensional systefeach 2D layerin
interaction, to a determined number of particles. The situacontact with a charge reservoir.
tion is different, however, when the model is in contact with
a large reservoir of particles. The content of particles in the ll. FERMI LEVEL RENORMALIZATION
small system(our 2D system depends ornuy and on the
strength with which the particles interact within it. Obvi-  The behavior ofu as A—0 can be obtained by solving
ously, a larger repulsion between the particles allows for ahe Schwinger-Dyson equation @# 1/Gy—3. The bare
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FIG. 4. Scaling of the chemical potential as a function of the
(b) high-energy cutoff for a Hubbard coupling=4t. The curves cor-
respond to different values of the bare chemical poteptialgiven

FIG. 3. Diagrams contributing to the electron self-energy at thein each case by at the highest value of the cutoff.
one-loop level.

it is found that the renormalized value gflies very close to
chemical potentiak in the free propagatdB, is corrected the level of the singularity, for appropriate values of the bare
by the frequency and momentum-independent part of thehemical potential.
self-energys. This is given to the one-loop order by the  Since the important physical effects take place near the
Hartree and exchange diagrams depicted in Fig. 3. At eackingularity, we may approximate the density of states by the
RG step, the loop integrals are carried over the occupiedependence(e)=zcln(t/e)/(47?t) for |¢|<0.%, and con-
states in the energy intervdlA. The result of this operation stant elsewhere. This has the correct normalization of the
is just the charge in the differential slice integrated overlogarithmic singularity, including the factar corresponding
given byn(u— A)dA in terms of the density of statege). to the quasiparticle weight near the VHS. The result of solv-
The differential renormalization of the chemical potengial ing the scaling equatiofil) for a Hubbard couplind) =4t
becomes then (with a constant ratia/t) has been represented in Fig. 4.
Similar flow patterns are obtained for a wide range of the
interaction strength extending beyokd=10t. We observe
d—'LL—Fn A & that there is a range of nominal values of the chemical po-
dA (n=0), tential in which this is attracted towards the VHS. As a con-
sequence of that, there is a range of filling levels that are
. . forbidden above the level of the singularity.
whereF is the forward-scattering vertex that couples to the  \we remark that, in the RG approach, the shift of the

charge densit. _ _ . , _ chemical potential is measured in the reference frame in
When extracting the differential correction to the chemi-\yhich the one-particle levels are held fixed. The intuitive

cal potential, we have neglected terms with derivatives wit hysical picture is however the reverse, namely, that the one-
respect Fo the cutoff of the quantities at t.he right-hand-side of 5 icle levels are shifted to higher energy by the repulsive
Eq. (1), in order to keep the RG equations to the one-l0oBneraction. The shift is proportional to the charge integrated
order. This approximation is actually justified by the fact thatout, until it is reached the point in which the last integrated
the resolution of the one-loop RG equation for fieertex  |gye| coincides with the nominal chemical potential.

leads to a weak-coupling regime near the V‘HE“G_ cutoff An important check is that the reduction of the quasipar-
dependence thu; obtained for the forwa.rd—scatterlng vérte_x ticle weight z does not affect the pinning to the VHS dis-
has to be taken into account when solving the flow equationaved by the chemical potential. It is known that the quasi-
(1). We recall that, in terms of the energy scalewhich  paricles” are strongly attenuated due to the enhanced
measures the proximity to the VHS, thevertex is reduced  gcattering rate near the singularity. This effect appears in the
according to the expressionF(s)~Fo/[1—CFoln(e)/  renormalization of the electron self-energy at the two-loop
(47?1)], wherec=1/\1—-4(t"/t)2.° level, where it is seen that bothand the hopping amplitude

The distinctive feature of the VHS s that the density oft are corrected by the interaction. The scaling equations have
statesn(e) diverges logarithmically. As a consequence, thepeen obtained in Ref. 12, and they read

renormalized chemical potential is attracted in a certain

range by the VHS ad—0. If F were constant, the fixed- q 1 U

ppint condition'—1'+Fn(,u)=O, with p=pn—A, would Aﬁmz(A)%G_g_‘l_z, )
give u(A). Taking into account the scaling of tifevertex, 87" t
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1

- It would be of great importance to have the counterpart of

T e the above results in the case of the system considered at fixed
J/ e particle number. Working in the grand-canonical ensemble,
0.8} yy the pinning of the Fermi level to the VHS over a certain
/, range ofuq can be realized by exchanging particles with the

reservoir. With the system at fixed particle number, however,

1
j
! ;
0.6 \ , the situation is unclear. The mechanism of pinning could be
Z,t H realized through the deformation of the Fermi line, i&s
04l varies, to remain closer to the saddle-points of the dispersion

relation. This would be consistent with the renormalization
of the Fermi line observed in numerical studies of the Hub-
02 bard model”*® Such an effect could be also related to the
experimental observations reported in Ref. 19. Otherwise, an
alternative to achieve the pinning may be the phase separa-
tion of the 2D system, with one of the phases at the Van
Hove filling and the other at a different filling varying with
the doping level. The analysis of which possibility is actually

FIG. 5. Curves representing the quasiparticle wetisolid  realized is beyond the reach of the methods applied in the
line), the hopping amplitude(dotted ling, and the rati/t (dashed  present paper. That would require the delicate task of consid-
line) as functions of the energy cutoff, for a Hubbard coupling ering the Fermi line as a dynamical object, which may only
U=4t. be afforded at present by discrete numerical approaches of
the kind applied in Refs. 5 and 7.

0.25 0.5 0.75 11\ 12515175 2

d NV
A——Int(A)=~5.4— —, 3
dA 87" t Ill. RENORMALIZATION OF FOUR-FERMION

. L . INTERACTIONS
whereU is the bare on-site interactidfi.

The solution of Egs(2) and (3) has been represented in  The scaling of the chemical potential(A) towards the
Fig. 5, in units in whicht=1 at the initial valueAy of the  VHS triggers the different instabilities in the system. These
cutoff. We observe that the quasiparticle weights renor-  can be traced back to the divergent behavior of some of the
malized to zero and, at the same time, the hopping amplitudmteraction channels. The four-point interaction vertex is
t scales to zero in the low-energy limit. There is however arenormalized at each RG step by a quantity of orddr
range, aboveA/Ay=~=0.02, where the rati@/t remains of when the momentum transfer along a pair of external lines is
order~1. The pinning of the chemical potential to the VHS either 0 (forward-scattering channelor Q=(m,7) (ex-
shown in Fig. 4 develops above such a valué\ofwhich is  change channglor when the total momentum of the incom-
also below the range of interest for the discussion carried ouhg modes vanishe8CS channgl Couplings with less re-
in the paper. We ensure in this way that the renormalizatiorstrictive kinematics can be also included in the Wilsonian
of the quasiparticle properties does not affect sensibly th&®G approach, as it has been done in Ref. 8. It has been
scaling of the chemical potential and the determination of theshown, however, that the contributions of these couplings to
different phases of the model. the RG flow are subdominant. The asymptotic behavior of

We remark again that the correct interpretation of thethe renormalized couplings is completely determined by the
above results requires the consideration of the system dbrward-scattering, exchange, and BCS channels. That is, for
fixed bare chemical potential, instead of fixed particle num-the purpose of finding the precise divergent behavior of the
ber, for each particular RG flow. We reach actually the con4interaction vertices, the couplings without any of these kine-
clusion that a variation in the bare chemical potenjigl  matical restrictions can be safely neglected.
does not have always a linear correspondence with the varia- In what follows, we will place in the regimg& <0.2786,
tion of the final renormalized value q&, which sets the in which the forward-scattering interactions are also sub-
Fermi level of the system. The interplay between the dynamdominant. In that range, the divergences at vanishing mo-
ics of the large reservoir that fixes the valuegqf and the  mentum transfer are related to charge instabilities of the sys-
small system near the Van Hove filling has been studied iilem, which have been treated in detail elsewH&hale will
Ref. 14. There it has been shown that the system has greatgee that divergences in the channel with momentum-transfer
stability when the Fermi level is at the VHS. In that frame- Q give rise to a spin instability, which competes with the
work, it has been possible to study the evolution of the totasuperconducting instability in the BCS channel in the model
energy of the small system and reservoir in terms of the totalith a bare on-site repulsive interaction.
number of particles, finding that such a function has a local The different kinematics that may appear in the BCS
minimum near the Van Hove filling. As an immediate con- channel are listed in Fig. 6. We allow for the possibility of
sequence, phase separation takes place in the neighborhoddhklapp processes in which the incoming modes scatter
of that filling level, since it is then energetically favorable to from one of the saddle-points to the other.
have some portion of the system with the Fermi level at the The different kinematical possibilities that arise in the
VHS channel with momentum-transf€ are classified in Figs. 7
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p -p P -p k+Q ! p+Q ! k+Q ! p+Q |
N /o ~ s

’ N

k -k k -k

FIG. 6. BCS vertices that undergo renormalization by particle-
particle diagrams. The solid and dashed lines stand for modes in the
neighborhood of the two different saddle-points.

p+Q ! k+Q * p+Q 1t k+Q |

and 8. The first includes the interactions in which the incom- N / N J
ing modes are at different saddle-points, while the latter con- : ¢ : ‘
tains the Umklapp processes. The other important distinction
is between direc{D) and exchangdE) processes. Direct
processes are those in which the momentum-trandfés
taken by the same scattered fermion line, while in a ex- kt pt kt Py
change process the momentum transfer takes place between (C) (d)
two different fermion lines connected only by the interaction.

The interaction vertices depicted in Figs. 6-8 are all F|G. 8. Umklapp vertices that undergo renormalization by
renormalized upon reduction of the cutoff. This can be particle-hole diagrams.
traced back to the divergent behavior of the different suscep-
tibilities of the model. By integration of the high-energy
modes in the shells of widtbA, the particle-hole suscepti- dxpp(0) = LIn(A)dA/A. (5)
bility at momentumQ gets a contribution 4%t

In the latter case, the result of the differential integration

(4) diverges logarithnmically in the limit\ — 0. This has been a
source of problems in the usual RG analyses of the model.
The definition of the argument in the logarithm needs an

where ¢’ =In[(1+V1I—4'7)2)/(2t'1)].2° In the same additional scale, while a proper RG scaling requires that the

fashion, the contribution to the particle-particle susceptibility"€rgy is the only dimensionful variable in the problem. It
at zero total momentum is has to be realized that the coefficient at the right-hand-side of

Eq. (5) represents actually the density of states. This has to
be born in mind for the correct implementation of the RG
k+Q p-Q ! k+Q ! P-Q | approach, as we will discuss later.
) ) Let us deal first with the renormalization of the vertices
with BCS kinematics in Fig. 6. At the one-loop level, the
verticesV, andV get corrections of ordedA/A from the
diagrams shown in Fig. 9. It is important to realize that these
are the only diagrams to be taken into account to first order
kt Py in dA.%® There are also corrections from particle-hole dia-
(b) grams but, as long as the momentum that goes into the
particle-hole loop is not precisely zero @; these terms are
of order dA)? and therefore irrelevant in the low-energy
limit, as shown graphically in Fig. 10.

dxpn(Q)=

k+Q 4 k+Q | The BCS vertices mix between themselves alone at the
one-loop level, and the situation is similar in that respect to
the general analysis of the 2D Fermi liqditiThe degree of
renormalization depends on the density of statgs) at the
shells integrated out. For later use, we consider at this point
the most general case in which the chemical poteptidbes
not coincide from the start with the level of the VHS. The
differential RG equations take then the form
(C) (d)
) . . AV,
FIG. 7. Direct and exchange vertices that undergo renormaliza- A —=¢n A V2+V 6
tion by particle-hole diagrams. JA (n=AX v, ®)
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q -q q -q p-Q! k+Q+ p-Q! k+Ql
o 4 y
/AMVV\ / \\\\ \\\\
p p p p kt P! p!
(a) (b) ®
p+Q! k+Q+ k+Q!
1 1 q "4 \\\ / ///
Y A N yd ) Y ‘ ’
A N A
oo /»\ ‘
/WM\ kt pi k! pi
P P P P © (d)
(©) (d) FIG. 11. Particle-hole diagrams renormalizing the vertiggs

) ) ) . _andE, at the one-loop level.
FIG. 9. Particle-particle diagrams renormalizing the BCS verti-

ces at the one-loop level. the latter case, for instance, it is shown in Fig. 12 that the

number of intermediate states produced by integration of

Vy high-energy modes is quadratic, instead of linead \n
A EN =2cn(p—AViVy. @) The differential RG equations for the pair of vertices read
These equations were considered in Ref. 4, and they also Eqr ., 5 ) )
appear at the dominant level in the RG approach of Ref. 8. A EV —C'(Eq, +EG)/(477), ®)
We consider next the renormalization of the vertiggs
andEy, , which have also the property that they mix only IE
between themselves in the one-loop corrections linedhin A— Eo.Eus 1(27%t). 9
These have been represented in Fig. 11. It can be checked IA

that any other diagrams give irrelevant contributions of ordetl_hese equations were obtained in Ref. 4. where the names
(dA)?, because they involve either a particle-hole suscepti- d Y

bility at momentum different fronQ or a particle-particle g&%‘gﬁﬂdtﬁgmﬁgﬁgﬁtusaede;nSTtﬁgdsf,ﬁg gngafilcj)ln Sm;g;, arise
susceptibility with total momentum different from zero. In P Paper. d

at the dominant level in the functional renormalization of

Ref. 8.
FIG. 10. Picture of the high-energy shells of widlA at a FIG. 12. Same scheme as in Fig. 10. The dark regions represent
given saddle point. The dark regions represent the contribution to the contribution to a particle-particle diagram wheris the total
particle-hole diagram wheq is the total incoming momentum. incoming momentum.
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k+Q! p-Qt k+Qt p-Q! These two equations can be combined to be written in terms
N N of the physical vertex,
vvvvvv/—\\r VY £
\\\Q,’/ \é &(DQ - EQ )
/ i / N A—HA L —¢'[(Dgy~ Eqp?+(Dyj~ Ey)?
kt pt Kt pt g
() (b) +D%, +DJ, 1/(47%). (12)
The RG equation foDq, also depends on the combinations
k+Q! p-Qt  k+Qt p-Q! Do— Eg andDy—Ey, since we have
N N / o/ tell ull—
Y - A
" 2l ‘r\MMA/ ) N\I:% aDQi A7 / 2
/W NN /”W . A= =c'[(Dgj~Eq))Dq, +(Dyj~EypDy, J(272)
Kt pt Kt p! (13
(c) (G As a final check, the equations f&r, —Ey andDy,

turn out to depend on the physical combination of couplings
FIG. 13. Particle-hole diagrams renormalizing the veflgy at

the one-loop level. d(Dy|—Ey)) )
A——5— ~C'[(Dg=Eq)(Dyj~Ey))

We now turn to the rest of the verticeBg|, Dq, , Eqj, )
Dyj, Dy, , andEy, which renormalize among themselves +Dq Dy, J/(27%), (14)
at the one-loop level. It is clear that the vertid®g andEg, R
cannot be distinguished from each other just by looking at ur 5
the external legs. The same appliestg; andEy . At the A A © [(Dqj=EqpDus +(Dyj=Ey)Do. J/(277).
one-loop level, one can still discern whether the momentum- (15)
transferQ takes place along the same scattered fermion line
or not. However, the different corrections have to organize so As long as the above RG equations depend explicitly on
that the above pairs of vertices enter in the combinationghe spin projection, they allow to see how the spin-rotational
Dg|—Eg| andDy—Eyj, which are the quantities that make invariance can be preserved along the RG orbits. For this
physical sense. In that respect, the situation is similar to whaiurpose one has to look at the response functions for the spin
happens with the Coup|ing$;]1” and oY in the one- operator, checking the conditions under which they become
dimensional electron systerfs. independent of the spin direction. An analysis of this kind

The one-loop renormalization of the vertices provides arhas been carried out in Ref. 14 considering the uniform mag-
explicit proof of the above statement. The Ver@éu gets  netization of the system. Since we are dealing with renormal-

linear corrections imA from the diagrams shown in Fig. 13, ized interactions at large momentum-transger (, ), we
while Eg is renormalized by the diagrams shown in Fig. 14.focus now on the correlations of the Fourier transform of the

Their RG equations read then spin operator at that momentum transf&/(Q), with j
=X,Y,Z.
P We pay attention to the frequency dependence of the spin
A_QH:C/(Déu”LDéﬁLDLZJHWLDfu_ZDQHEQM response functions, which can be established through their
N scaling propertie§® The response functioR,(w) for the
_ 2 S,(Q) operator, for instance, is renormalized by the diagrams
2Dy By (4771), (10 shown in Fig. 15. After taking the derivative with respect to
the cutoff and imposing the self-consistency of the diagram-
IEq 5 5 ) matic expansion, we obtain
W:_C,(EQH"‘EU“)/(4W t). (11)
R, 2C,+C, (Dg|—Eq+Dyj—Ey—D
_z_ L7 — ul—Eul—
p-Qt k+Qt  p-Q't k+Q1 2 m’t it o ” e
A s ~Dyu)R,. (16)
S S The response function®,(w) and R (w) for the other
R’ ! 2 two components of the spin operator are both renormalized
‘U

by the diagrams shown in Fig. 16. Following the same pro-

N N cedure as foR,(w), we obtain
k! t k! 1
@ P ®) P IRy 2c¢’ ¢
Aﬁ—A:—E—E(Eqﬁ'EUL)RX 17
FIG. 14. Particle-hole diagrams renormalizing the veigy at
the one-loop level. and a completely similar equation & ().
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channels that develop the strongest divergences in the Wil-
sonian RG approach. Restricting the analysis to the forward-

' E scattering, the exchange and the BCS kinematics, the renor-
rd ‘;‘5;’ \|§+Tzf/ vy malization program can be carried out self-consistently with
a reduced number of couplings.

In Ref. 8, a scheme has been proposed to go beyond the
consideration of the channels with special kinematics, by as-
signing a number of generic couplings to the interaction ver-
tices when the momenta of the particles do not fall within the
N S S restrictive conditions. Although the RG equations of the cou-
p+Qt a+Q} p+Qt Q4 plings for the special kinematics get corrections from the
© @ generic couplings, it turns out that the asymptotic behavior
of the solutions is completely determined by the former set.
The couplings calledy; and g} in Ref. 8 correspond pre-
cisely to our coupling€, andE , while those called there
g5°®andg5“* correspond to our definitions faf, andV,,
respectively. At the dominant level, that is keeping the domi-
nant terms which give the divergent asymptotic behavior, the
RG equations of Ref. 8 for the mentioned couplings coincide
with our Egs.(6)—(9). The rest of our RG equations provide

FIG. 15. First-order contributions to the correlator of tBe  the extension to the more involved situation in which the
operator. couplings depend explicitly on the spin projection.

Certainly, a more satisfactory RG approach should try to

The response functior®,(w), Ry(w), andR,(») can be keep some form of continuity in the momentum dependence

(@) (b)

(e) )

made exactly equal if the equation of the renormalized vertices. Between the couplings for the
special kinematics and those which apply to generic distri-
Do|—Eq|*tDuyj—Ey—Dqi =Dy, =—Eq, —Eu: butions of the momenta, there should be incorporated the

(18 intermediate instances which may still develop some degree
is satisfied all along the flow. From Eq®), (9), (12~(15), of divergence. It is not likely that the most refined RG equa-

b that this | " tically fulfilled when th tions may lead to different results regarding the dominant
Wwe observe that this 1S automaticaly Tulliied when the Con'divergences obtained at the present stage, but a true func-
dition is imposed for the initial values of the couplings. In

th fthe Hubbard model. for inst h bef tional renormalization would provide the definitive check
€ case of the riubbard model, Tor Instance, we have beolf, 1 e divergences in the interaction vertices develop for
the renormalization of the couplings

localized distributions of the momenta, specially in what

concerns those with the highest critical scale.
Do, + Dy, — Do+ Eqj—Dyj+Eyj=Eq. +Ey, =2U. 9

(19

. . L . IV. SPIN AND SUPERCONDUCTING INSTABILITIES
The condition(18) is actually satisfied by the bare couplings

of any Hamiltonian that is invariant under rotations. We If one were to take the bare couplirg of the Hubbard
show in this way that, in the Wilsonian RG approach, themodel as the initial point of the RG scaling, the set of Egs.
SU(2) spin symmetry can be preserved at each point of thé6) and(7) would not provide interesting physics. This is so
RG flow of the couplings. because we would have in such c&eVy=U, and send-

The RG equations that we have obtained can be considng the cutoff to zero would simply reduce monotonically the
ered as a first step towards a functional renormalization ointeractions in these channels. However, the diagonals in this
the interaction vertices. These depend on the momenta of ttepace of couplings mark the boundary between the regions of
incoming and outgoing particles, and it is natural that theystable and unstable scaling. The slightest perturbation with
may be renormalized with different strength under differentV, <V, will make the couplings to grow large, pointing at
regimes of the momenta. We have taken into account théhe appearance of new features in the system.

An interesting effect comes from the fact that, even in the
Hubbard model, there are corrections that vanish in the low-
energy limitA — 0 (irrelevant operatoysut may drive to the
unstable regime at the early stages of the scaling. The Kohn-
Luttinger effect, that leads to a pairing instability in the
Fermi liquid at very low energieS can be established on the
same grounds in the RG framewdrkin the case of the
Hubbard model, the corrections ¥y andV are given by
the horizontal iteration of the bubble diagrams in Fig. 17.

FIG. 16. First-order contributions to the correlators of fg@nd ~ The momentum flowing to the bubbles is not in general close
S, operators. to O, in the first case, nor tQ, in the second. In the Wilso-

(@) (b
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FIG. 17. Particle-hole corrections to the BCS vertices in the
Hubbard model.
nian RG scheme, these particle-hole bubbles scale therefore ~ 0.02 _ spin
as ~(dA)2, and they are considered irrelevant instability ¢
contributionst®
In the Hubbard model with’<0.278, the corrections
' 07 06 05 04 03 02
coming from the iteration of diagrare) in Fig. 17 have o

smaller strength than those from diagrdh.* As long as
these are antiscreening diagrams, i.e., they add to the bare FIG. 18. Plot of the energy scale of the superconducting insta-
repulsive interaction, the conditions are met to have an unbility (thin line) and of the transition to the phase with spin insta-
stable scaling for the vertices in Fig. 6, with the above conbility (thick line). This phase is given by the shaded region in the
straint ont andt’. The singular behavior develops for the diagram, while the region to its right and below the thin line corre-
combinationV, —Vy,, in which the particle-particle diagrams sponds to the phase where the superconducting correlations prevail.
build up a pole for an imaginary value of the frequency. The, o o
physical interpretation is that there is a condensation of Coo"9 'UStab'“tM but the_ presence in this case of a macro-
per pairs at the scale where the vertex function divefges. SCopic number of particle-hole pairs leads to nonvanishing
The symmetry of the order parameter turns out taiveave, ~ expectation values of the type[d*k(W A, (k) ¥g, (k+Q))
as the combinatioW, —V,, corresponds to having opposite =4, ¥,,(k) being the electron field operator at saddle-
amplitudes in the two saddle-points. point «. This has a drastic effect in the low-energy spectrum,
In our approach, the scaling of the chemical potentialSince the electron propagator is corrected by the insertion of
w(A) allows to deal with a finite density of states in E¢®).  the condensate as shown in Fig. 19. The result is that a gap
and (7) during the RG flow. The result of computing the of magnitudgA| opens up in the spectrum of quasiparticles.
scale at whichv,—V, diverges, for a value of the Hubbard The appearance of this gap takes place in the neighborhood
couplingU=4t andt’=0.1&, has been represented in Fig. of the saddle-points. It can be shown that the size of the
18. A singularity is only found for values of the bare chemi- Fermi_line destroyed by the nesting of such points is
cal potentialuy=u(A,) that lead to attraction of the Fermi =< \/|A|/t’, in units of the inverse lattice spacing.
level to the VHS. The curve of the critical scale reaches a The point at which the vertekq, +E, diverges can be
maximum for a certain value of optimal doping, and then itestimated from Eqs€(8) and(9), and it has been represented
decreases for smaller values @f as the chemical potential in Fig. 18 for our particular choicé’ =0.1&. The scale of
is not precisely pinned to the VHS in the low-energy limit. condensation of particle-hole pairs is larger than the scale of
The instability in the BCS channel has to be matchedhe superconducting instability up to the point of optimal
against the strong tendency towards a magnetic instability etoping marked by the peak of the latter. In our computational
wave-vectorQ= (7, 7) for t'<0.278.% In the RG frame- framework, the energy scale of the former instability has a
work, this comes from the divergent behavior of the solu-constant behavior as a function of the bare chemical potential
tions of Egs.(8), (9), (12—(15), in the case of the Hubbard uo. This is due to the fact that, in the absence of a precise
model withU>0. As shown in the preceding section, the knowledge of the renormalization of the complete Fermi
spin-rotational invariance is preserved along the RG orbitsline, we can only discern that the particle-hole corrections
We can therefore carry out the analysis of the solutions for gliverge whenever the Fermi level remains pinned to the
given choice of the spin projection, in particular for the VHS. In the range of values qf, displayed in Fig. 18 down
Eq. +Ey, channel that governs the correlations of e  t0 uo~0.29, the final renormalized values of the chemical
andS, operators. In the low-energy limit, a singularity in the

couplings is reached at a certain value/of The important A A
point is that the logarithmically divergent particle-hole K K " g k+Q g K
bubbles building up the singularity have an imaginary part —s—— = + B r
equal toi 7/2 timesc’/(4?t), which means that the vertex G, g’) S’) g’) G,

gets actually a pole for an imaginary value of the frequency.
Thus, the divergence in this channel gives rise to the con- FIG. 19. Self-consistent equation for the dressed electron propa-

densation of particle-hole pairs with momentuth This  gatorG in the particle-hole condensate, in terms of the undressed

physical interpretation is similar to that of the superconductpropagatorsz$®’ andGY at the two inequivalent saddle-points.
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that the gap opening up in the spectrum. As mentioned be-
fore, the scaling oEq, +Ey, relies on the pinning to the
1.15 VHS and, beyond the optimal doping, it is therefore arrested
before the singularity in the vertex is reached. This is in
1.1 contrast to the scaling in the BCS channel, which is given by
Eqs.(6) and(7) irrespective of the pinning to the VHS The
strength of the superconducting instability is however modu-
lated by the proximity to the VHS, and it fades away as the
final value of the renormalized chemical potential departs
0.95 sensibly from the level of the singularity.
: The divergence in th&q, +Ey; channel may result in
0.9 a nonvanishing expectation value with spin projecti®n
) or S,, depending on the choice of the condensate wave
0.85 function. A similar divergence in the channel with
) momentum-transfer Q and no spin-flip shows that
de3k<\IfZT(k)\PBT(k+Q)) has also an absolute value pre-
03 04 05 06 07 08 cisely equal tdA|. Depending on the different combinations
Mo of phases, the spin of the condensate may point in any direc-
FIG. 20. Plot of the correspondence betwga@;_(measured_with tlz;)t?or?;;[ ?ﬁvzﬂszi,epé? }/ﬁ(ﬂelnvg\]/igr;%tigﬁréné 2‘2%2%“:” of the ro
respect to the level of thz_a vr_-)Sund the band f'”'”g_n’ Obta'”eq When considering the model strictly at zero temperature,
frpm a con_stant renormalization of the bare chemical potential a$he ground state of the system is forced to choose a definite
discussed in the text. projection of the spin. The condensation of particle-hole
pairs leads then to the spontaneous breakdown of tH8)SO
potential lie very close to the level of the VHS, as observednvariance. As a consequence, a pair of Goldstone bosons
in Fig. 4. Then we may assume, as a first approximation, thaarise corresponding to spin waves on top of the condensate
the scaling towards the magnetic instability is equally strong®f particle-hole pairs. In the regime below optimal doping
over that range ofo. This assumption breaks down when Where the magnetic instability prevails, these are the gapless
the renormalized chemical potential departs from the VHSEXcitations of the spectrum together with the quasiparticles
by an amount comparable to the own gap that would arisgo_m the regions not affected by the nesting of the saddle-
from the instability. When this happens, it can be assured thdt®!Nts- o . .
the scaling is arrested before the singularity in the magnetilc%/We have thus clarified the nature of the magnetic instabil-

1.05

response function is reached. This marks the boundary of tiy_ hat arises when the Fermi level is pinned to the VHS of
the electron system. The main physical effect is the conden-

magnetic phase gio~0.29. e o sation of particle-hole pairs, which results in the opening of a
In a more accurate description of a real system, it is con-

. S ap for the quasiparticles in the neighborhood of the saddle-
ceivable that the energy scale giving the onset of the r’”"’“?éoints. This is the dominant instability up to the optimal

netic instability may have a smooth dependence on the dopyoning marked by the peak of the scale of the superconduct-
ing level. This may arise from the renormalization of e  jnq instability, which takes over for higher doping levels.
parameter in the process of pinning of the Fermi level. That The properties that we have discussed rely on the exis-
analysis requires however the knowledge of the dynamics dfence of an attractive fixed-point in the scaling of the chemi-
the whole Fermi surface, and it goes beyond the preserdal potential of the 2D system. They are therefore robust as
computational framework. they do not depend on fine-tuning or on the particular details
At this point, it may be convenient to establish a relationof the model, what may explain some of the universal prop-
between the values qgf, and the band fillings resulting in erties of the hole-doped copper-oxide superconductors. As it
the case that the system were closed instead of being in cohas been emphasized, the correct interpretation of the RG
tact with the charge reservoir fixing the valuewof. To draw  results implies actually the consideration of the 2D system in
a continuous correspondence, we have determined the bag@ntact with a charge reservoir which fixes the bare chemical
filling given by the Fermi level that would be obtained from Potential. From a conceptual point of view, it would be very
1o Upon a conventional renormalization due to the interacimportant to understand the mechanism of pinning of the
tion (as in the upper and the lower curve of Fig. Zhe Fermi level in a closed system. This may require the devel-

results are represented in Fig. 20, whestands for the band °Pment of new techniques, able to incorporate the whole
filing of the 2D system. dynamical evolution of the Fermi line in the renormalization

For low doping levels, the opening of a gap of magnitudeP’0Cess: which is not afforded by the present computational

|A| is the effect that prevails, and the renormalization of theSchemMes.
interactions is stopped at that energy scale. On the other

hand, the superconducting instability takes over beyond the

optimal doping. This point corresponds to the situation Fruitful discussions with F. Guinea are gratefully ac-
where the chemical potential remains closer to the VHS durknowledged. This work has been partly supported by CICyT
ing its RG flow while, at the same time, the deviation of the(Spaip and CAM (Madrid, Spain through Grants Nos.
final renormalized value already becomes of the same ordg*B96/0875 and 07N/0045/98.

ACKNOWLEDGMENTS

054510-10



SUPERCONDUCTING AND PSEUDOGAP PHASES FROM.. .. PHYSICAL REVIEW6R, 054510 (2003

1See, for instance, E. Dagotto, Rev. Mod. Ph§8, 763 (1994); 34, 711(1996.
and P.W. AndersonThe Theory of Superconductivity in the '2J. Gonzéez, F. Guinea, and M.A.H. Vozmediano, Nucl. Phys. B
High-T. Cuprates(Princeton Univ., Princeton, 1997 485, 694 (1997).

2N.E. Bickers, D.J. Scalapino, and S.R. White, Phys. Rev. B&ft. 13G. Kastrinakis, Physica 340, 119 (2000.
961 (1989; P. Monthoux, A.V. Balatsky, and D. Pines, Phys. 143, Gonzez, Phys. Rev. B3, 045114(2002.

Rev. B46, 14 803(1992. SR, Shankar, Rev. Mod. Phy&6, 129 (1994.
3D.M. Newns, H.R. Krishnamurthy, P.C. Pattnaik, C.C. Tsuei, and®It has been shown in Ref. 12 that the Lorentz-like symmetry of
C.L. Kane, Phys. Rev. Let69, 1264(1992; P.C. Pattnaik, C.L. thet(kf—kf,) saddle-point dispersion is preserved by the inter-
Kane, D.M. Newns, and C.C. Tsuei, Phys. Rev.4B 5714 action, so that the main renormalization of the saddle-point band
(1992; L.B. loffe and A.J. Millis, ibid. 54, 3645(1996; for a is encoded in the parameterandt.
review, see R.S. Markiewicz, J. Phys. Chem. Sob&s 1179 17p, Duffy and A. Moreo, Phys. Rev. B2, 15 607(1995.
(1997. 18A. Himeda and M. Ogata, Phys. Rev. Le86, 4345(2000.
4J.V. Alvarez, J. GonZaz, F. Guinea, and M.A.H. Vozmediano, J. °A.A. Kordyuk, S.V. Borisenko, M.S. Golden, S. Legner, K.A.
Phys. Soc. Jpr67, 1868(1998. Nenkov, M. Knupfer, J. Fink, H. Berger, L. Forrand R. Fol-
5C.J. Halboth and W. Metzner, Phys. Rev.@, 7364 (2000; lath, Phys. Rev. B56, 014502(2002. It has been shown there
Phys. Rev. Lett85, 5162(2000. that the Fermi line of Bi-2212 bends progressively as the doping
63. Gonztez, F. Guinea, and M.A.H. Vozmediano, Phys. Rev. Lett. level is increased, in such a way that even in the overdoped
84, 4930(2000. regime it does not lose its hole-like character.
7C. Honerkamp, M. Salmhofer, N. Furukawa, and T.M. Rice, Phys2?°H.Q. Lin and J.E. Hirsch, Phys. Rev. 3, 3359(1987).
Rev. B 63, 035109(2001). 213, Sdyom, Adv. Phys.28, 201(1979.
8B. Binz, D. Baeriswyl, and B. Dowt, Eur. Phys. J. B5, 69  2?H.J. Schulz, inCorrelated Electron Systemedited by V. J. Em-
(2002. ery (World Scientific, Singapore, 1993Vol. 9.
9H.J. Schulz, Europhys. Letf, 609 (1987; I.E. Dzyaloshinskii, 2*W. Kohn and J.M. Luttinger, Phys. Rev. Lett5 524 (1965.
Sov. Phys. JETB6, 848(1987. 24A.A. Abrikosov, L.P. Gorkov, and I.E. Dzyaloshinshilethods of
0R.S. Markiewicz, J. Phys.: Condens. Matgr665 (1990. Quantum Field Theory in Statistical Physi@over, New York,

1. Gonzéez, F. Guinea, and M.A.H. Vozmediano, Europhys. Lett. 1975, Chap. 7.

054510-11



