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Superconducting and pseudogap phases from scaling near a Van Hove singularity
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We study the corrections to the Fermi energy induced by the interactions in a two-dimensional electron
system, showing that it is attracted towards the Van Hove singularity for a certain range of doping levels. The
scaling of the Fermi level allows to cure the infrared singularities left in the BCS channel after renormalization
of the leading logarithm near the divergent density of states. A phase ofd-wave superconductivity arises
beyond the point of optimal doping corresponding to the peak of the superconducting instability. For lower
doping levels, the condensation of particle-hole pairs due to the nesting of the saddle-points takes over, leading
to the opening of a gap for quasiparticles in the neighborhood of the singular points.

DOI: 10.1103/PhysRevB.67.054510 PACS number~s!: 74.20.Mn, 71.10.Hf
ep
o
b
av
e

th
A

ag
-

nt
e

r a
e
u

ha
th
o

ad
s
e
s
i

H
ro
i-
t
th
ti
ic

dl

l

of

the
a

u-
mo-
I. INTRODUCTION

The study of the electronic properties of the cuprates r
resents nowadays a great challenge from the theoretical p
of view, as the phenomenology of these materials has
come increasingly rich during the last decade. There h
only been a few attempts to develop a theory that may
compass the main experimental features,1 including the anti-
ferromagnetism of the undoped compounds and
pseudogap phase above the superconducting transition.
ditionally, other proposals have focused on the mechanism
superconductivity, stressing the role played by antiferrom
netic fluctuations2 or by the proximity to a Van Hove singu
larity ~VHS! in the doped materials.3

The later approach has received much attention rece
since it establishes a natural competition between magn
and superconducting instabilities in a two-dimensional~2D!
system.4–8 The investigation of the model of electrons nea
VHS is delicate due to the appearance of logarithmic div
gences in perturbation theory. In a renormalization gro
~RG! framework, one has to handle infrared singularities t
arise after renormalizing away the leading logarithm, as
energy dependence of some quantities comes in powers
logarithm square.9

Most part of the analyses of the problem have been m
fixing the Fermi level at the VHS from the start. This que
tions the naturalness of the predicted instabilities, that r
critically on the proximity to the singular density of state
The Fermi energy is actually a dynamical quantity that
shifted by interaction effects. It has been shown that the V
has the tendency to attract the Fermi level of the elect
system.10–14It is therefore more appropriate to let the chem
cal potential free to evolve as the states are integrated in
quantum theory. This also solves at once the problem of
infrared divergences, as the shift of the chemical poten
from the VHS acts as an infrared cutoff in the logarithm
dependences left in the renormalization.

We illustrate the above ideas in the case of thet2t8 Hub-
bard model, which has a dispersion relation with sad
points atA5(p,0) andB5(0,p), as depicted in Fig. 1. We
consider then a model whose action at the classical leve
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3d~v11v22v32v4!,

where the indicesa,b,c,d run over the two patches aroundA
and B, and «A,B(p)'7(t72t8)px

26(t62t8)py
2 . The scal-

ing transformation that leaves invariant the kinetic term
the action~at m050) is

v→sv,

p→s1/2p,

Cas~p,v!→s23/2Cas~p,v!.

It is easily checked that, with the above transformation,
interaction term in the action is also scale invariant for
constant value of the potentialU(p1 ,p2 ,p3 ,p4). If this is not
constant, provided that it is a regular function of the arg
ments we can resort to an expansion in powers of the

FIG. 1. Contour energy map for thet2t8 model about the Van
Hove filling.
©2003 The American Physical Society10-1
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menta. Only the constant term is significant, since the res
higher-order terms fade away upon scaling to the low-ene
limit s→0. Interactions with higher number of fields in th
action are also irrelevant in that limit. This means that
meet the first requirement to apply the RG program, that i
have a model that converges to a fixed-point under sca
transformations at the classical level.

We deal with a Wilsonian RG approach in which th
chemical potentialm is originally placed away from the
VHS, and electron modes in two thin slices about energ
m1L andm2L are progressively integrated out, as sho
in Fig. 2. This approach assumes that the model is consid
at fixed bare chemical potential, so that the statistical
scription is made in terms of the grand-canonical ensem
The physical situation corresponds to the case in which
system is in contact with a large reservoir of particles, t
fixes the bare valuem0 of the chemical potential.

An important feature of the Wilsonian approach is that
progressive integration of the high-energy electron mo
leads to the reaccomodation of the Fermi level at each
step, due to the self-energy corrections arising from
charge integrated out. In this computational framework, o
adopts the picture in which the chemical potential depe
on the energy scaleL, in the reference frame in which th
one-particle levels are held fixed. Then, the renormali
chemical potentialm(L) can be thought as a quantity param
etrizing the particle number in the system.

In general, in a closed system one does not assign
physical meaning to the bare value of the chemical poten
since it is just set to correspond, after renormalization by
interaction, to a determined number of particles. The sit
tion is different, however, when the model is in contact w
a large reservoir of particles. The content of particles in
small system~our 2D system! depends onm0 and on the
strength with which the particles interact within it. Obv
ously, a larger repulsion between the particles allows fo

FIG. 2. Picture of the density of statesn(«) and of the renor-
malization of the chemical potentialm by integration of states at th
energy cutoffL.
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larger compensation of the pressure of particlesm0 exerted
by the reservoir. This is the kind of effect that lies in th
renormalization of the chemical potential, specially nea
VHS where the interaction strength depends implicitly on
density of states.

The renormalization of the chemical potential accou
therefore for the reduction suffered by its effective value
the 2D system due to the repulsive interaction. This com
tational scheme produces the same results as the equiv
but more physical picture in which, instead of the chemi
potential, the one-particle levels are renormalized to hig
energies by effect of the repulsive interaction. In this int
pretation, the shift of the levels depends again on the amo
of charge present in the system, in such a way that the Fe
energy for the renormalized levels is bound to coincide w
the nominal chemical potentialm0 of the reservoir. This pic-
ture is dual and completely equivalent to that adopted in
computational framework, in which the chemical potential
seen as renormalized in a system with unrenormalized o
particle levels.

The renormalization of the chemical potential has be
already noticed in the general RG analysis of interacting
mion systems.15 While, in the case of an isotropic dispersio
relation, this dependence ofm(L) on the cutoff does not
have physical significance, the situation is different in t
system under consideration since the charge integrated o
each RG step bears the nontrivial dependence of the de
of states near the VHS.

The other important difference that introduces the Wils
nian approach with respect to other RG analyses of
model is the significance that acquires the kinematics in
classification of the interaction channels. This has been
of the main remarks made by Shankar in the application
RG techniques to interacting fermion systems.15 In the sim-
plest version, one reduces the problem to a finite numbe
couplings corresponding to channels with particular kinem
ics ~the so-called forward-scattering, exchange and B
channels!. This may be considered as a first approximation
capture the behavior of the interaction vertices, which rep
sent a manifold of couplings depending on the momenta
the particles. Some attempts have been already made t
corporate in a more refined way this functional depende
of the interaction within the RG approach.8

In what follows, we deal therefore with a RG schem
which is appropriate for the electron system in contact wit
charge reservoir, which sets the bare valuem0 of the en-
semble. The evolution of the Fermi level in a model descr
ing the contact of a system near a VHS and a real cha
reservoir has been studied in Ref. 14. The results obta
below with the RG approach are in agreement with those
such a detailed analysis. Let us also remark that the con
eration of the system at fixed bare chemical potential may
most appropriate for the description of the Cu-O layers of
cuprate superconductors, as these may provide a prac
realization of a low-dimensional system~each 2D layer! in
contact with a charge reservoir.

II. FERMI LEVEL RENORMALIZATION

The behavior ofm as L→0 can be obtained by solving
the Schwinger-Dyson equation 1/G51/G02S. The bare
0-2
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chemical potentialm0 in the free propagatorG0 is corrected
by the frequency and momentum-independent part of
self-energyS. This is given to the one-loop order by th
Hartree and exchange diagrams depicted in Fig. 3. At e
RG step, the loop integrals are carried over the occup
states in the energy intervaldL. The result of this operation
is just the charge in the differential slice integrated ov
given byn(m2L)dL in terms of the density of statesn(«).
The differential renormalization of the chemical potentialm
becomes then

dm

dL
5Fn~m2L!, ~1!

whereF is the forward-scattering vertex that couples to t
charge density.6

When extracting the differential correction to the chem
cal potential, we have neglected terms with derivatives w
respect to the cutoff of the quantities at the right-hand-side
Eq. ~1!, in order to keep the RG equations to the one-lo
order. This approximation is actually justified by the fact th
the resolution of the one-loop RG equation for theF vertex
leads to a weak-coupling regime near the VHS.6 The cutoff
dependence thus obtained for the forward-scattering verteF
has to be taken into account when solving the flow equa
~1!. We recall that, in terms of the energy scale« which
measures the proximity to the VHS, theF vertex is reduced
according to the expressionF(«)'F0 /@12cF0ln(«)/
(4p2t)#, wherec[1/A124(t8/t)2.6

The distinctive feature of the VHS is that the density
statesn(«) diverges logarithmically. As a consequence, t
renormalized chemical potential is attracted in a cert
range by the VHS asL→0. If F were constant, the fixed
point condition 211Fn(m̃)50, with m̃5m2L, would
give m(L). Taking into account the scaling of theF vertex,

FIG. 3. Diagrams contributing to the electron self-energy at
one-loop level.
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it is found that the renormalized value ofm lies very close to
the level of the singularity, for appropriate values of the ba
chemical potential.

Since the important physical effects take place near
singularity, we may approximate the density of states by
dependencen(«)5zc ln(t/«)/(4p2t) for u«u<0.5t, and con-
stant elsewhere. This has the correct normalization of
logarithmic singularity, including the factorz corresponding
to the quasiparticle weight near the VHS. The result of so
ing the scaling equation~1! for a Hubbard couplingU54t
~with a constant ratioz/t) has been represented in Fig.
Similar flow patterns are obtained for a wide range of t
interaction strength extending beyondU510t. We observe
that there is a range of nominal values of the chemical
tential in which this is attracted towards the VHS. As a co
sequence of that, there is a range of filling levels that
forbidden above the level of the singularity.

We remark that, in the RG approach, the shift of t
chemical potential is measured in the reference frame
which the one-particle levels are held fixed. The intuiti
physical picture is however the reverse, namely, that the o
particle levels are shifted to higher energy by the repuls
interaction. The shift is proportional to the charge integra
out, until it is reached the point in which the last integrat
level coincides with the nominal chemical potential.

An important check is that the reduction of the quasip
ticle weight z does not affect the pinning to the VHS dis
played by the chemical potential. It is known that the qua
particles are strongly attenuated due to the enhan
scattering rate near the singularity. This effect appears in
renormalization of the electron self-energy at the two-lo
level, where it is seen that bothz and the hopping amplitude
t are corrected by the interaction. The scaling equations h
been obtained in Ref. 12, and they read

L
d

dL
ln z~L!'6.9

1

8p4

U2

t2
, ~2!

e

FIG. 4. Scaling of the chemical potential as a function of t
high-energy cutoff for a Hubbard couplingU54t. The curves cor-
respond to different values of the bare chemical potentialm0, given
in each case bym at the highest value of the cutoff.
0-3
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L
d

dL
ln t~L!'5.4

1

8p4

U2

t2
, ~3!

whereU is the bare on-site interaction.16

The solution of Eqs.~2! and ~3! has been represented
Fig. 5, in units in whicht51 at the initial valueL0 of the
cutoff. We observe that the quasiparticle weightz is renor-
malized to zero and, at the same time, the hopping amplit
t scales to zero in the low-energy limit. There is howeve
range, aboveL/L0'0.02, where the ratioz/t remains of
order;1. The pinning of the chemical potential to the VH
shown in Fig. 4 develops above such a value ofL, which is
also below the range of interest for the discussion carried
in the paper. We ensure in this way that the renormaliza
of the quasiparticle properties does not affect sensibly
scaling of the chemical potential and the determination of
different phases of the model.

We remark again that the correct interpretation of
above results requires the consideration of the system
fixed bare chemical potential, instead of fixed particle nu
ber, for each particular RG flow. We reach actually the c
clusion that a variation in the bare chemical potentialm0
does not have always a linear correspondence with the v
tion of the final renormalized value ofm, which sets the
Fermi level of the system. The interplay between the dyna
ics of the large reservoir that fixes the value ofm0 and the
small system near the Van Hove filling has been studied
Ref. 14. There it has been shown that the system has gr
stability when the Fermi level is at the VHS. In that fram
work, it has been possible to study the evolution of the to
energy of the small system and reservoir in terms of the t
number of particles, finding that such a function has a lo
minimum near the Van Hove filling. As an immediate co
sequence, phase separation takes place in the neighbor
of that filling level, since it is then energetically favorable
have some portion of the system with the Fermi level at
VHS.14

FIG. 5. Curves representing the quasiparticle weightz ~solid
line!, the hopping amplitudet ~dotted line!, and the ratioz/t ~dashed
line! as functions of the energy cutoffL, for a Hubbard coupling
U54t.
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It would be of great importance to have the counterpar
the above results in the case of the system considered at
particle number. Working in the grand-canonical ensemb
the pinning of the Fermi level to the VHS over a certa
range ofm0 can be realized by exchanging particles with t
reservoir. With the system at fixed particle number, howev
the situation is unclear. The mechanism of pinning could
realized through the deformation of the Fermi line, asm0
varies, to remain closer to the saddle-points of the dispers
relation. This would be consistent with the renormalizati
of the Fermi line observed in numerical studies of the Hu
bard model.17,18 Such an effect could be also related to t
experimental observations reported in Ref. 19. Otherwise
alternative to achieve the pinning may be the phase sep
tion of the 2D system, with one of the phases at the V
Hove filling and the other at a different filling varying wit
the doping level. The analysis of which possibility is actua
realized is beyond the reach of the methods applied in
present paper. That would require the delicate task of con
ering the Fermi line as a dynamical object, which may on
be afforded at present by discrete numerical approache
the kind applied in Refs. 5 and 7.

III. RENORMALIZATION OF FOUR-FERMION
INTERACTIONS

The scaling of the chemical potentialm(L) towards the
VHS triggers the different instabilities in the system. The
can be traced back to the divergent behavior of some of
interaction channels. The four-point interaction vertex
renormalized at each RG step by a quantity of orderdL
when the momentum transfer along a pair of external line
either 0 ~forward-scattering channel! or Q[(p,p) ~ex-
change channel!, or when the total momentum of the incom
ing modes vanishes~BCS channel!. Couplings with less re-
strictive kinematics can be also included in the Wilsoni
RG approach, as it has been done in Ref. 8. It has b
shown, however, that the contributions of these couplings
the RG flow are subdominant. The asymptotic behavior
the renormalized couplings is completely determined by
forward-scattering, exchange, and BCS channels. That is
the purpose of finding the precise divergent behavior of
interaction vertices, the couplings without any of these kin
matical restrictions can be safely neglected.8

In what follows, we will place in the regimet8,0.276t,
in which the forward-scattering interactions are also s
dominant. In that range, the divergences at vanishing m
mentum transfer are related to charge instabilities of the s
tem, which have been treated in detail elsewhere.14 We will
see that divergences in the channel with momentum-tran
Q give rise to a spin instability, which competes with th
superconducting instability in the BCS channel in the mo
with a bare on-site repulsive interaction.

The different kinematics that may appear in the BC
channel are listed in Fig. 6. We allow for the possibility
Umklapp processes in which the incoming modes sca
from one of the saddle-points to the other.

The different kinematical possibilities that arise in th
channel with momentum-transferQ are classified in Figs. 7
0-4
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and 8. The first includes the interactions in which the inco
ing modes are at different saddle-points, while the latter c
tains the Umklapp processes. The other important distinc
is between direct~D! and exchange~E! processes. Direc
processes are those in which the momentum-transferQ is
taken by the same scattered fermion line, while in a
change process the momentum transfer takes place bet
two different fermion lines connected only by the interactio

The interaction vertices depicted in Figs. 6–8 are
renormalized upon reduction of the cutoffL. This can be
traced back to the divergent behavior of the different susc
tibilities of the model. By integration of the high-energ
modes in the shells of widthdL, the particle-hole suscepti
bility at momentumQ gets a contribution

dxph~Q!5
c8

4p2t
dL/L, ~4!

where c8[ ln@(11A124(t8/t)2)/(2t8/t)#.20 In the same
fashion, the contribution to the particle-particle susceptibi
at zero total momentum is

FIG. 6. BCS vertices that undergo renormalization by partic
particle diagrams. The solid and dashed lines stand for modes i
neighborhood of the two different saddle-points.

FIG. 7. Direct and exchange vertices that undergo renorma
tion by particle-hole diagrams.
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dxpp~0!5
c

4p2t
ln~L!dL/L. ~5!

In the latter case, the result of the differential integrati
diverges logarithmically in the limitL→0. This has been a
source of problems in the usual RG analyses of the mo
The definition of the argument in the logarithm needs
additional scale, while a proper RG scaling requires that
energy is the only dimensionful variable in the problem.
has to be realized that the coefficient at the right-hand-sid
Eq. ~5! represents actually the density of states. This ha
be born in mind for the correct implementation of the R
approach, as we will discuss later.

Let us deal first with the renormalization of the vertic
with BCS kinematics in Fig. 6. At the one-loop level, th
verticesVI andVU get corrections of orderdL/L from the
diagrams shown in Fig. 9. It is important to realize that the
are the only diagrams to be taken into account to first or
in dL.15 There are also corrections from particle-hole d
grams but, as long as the momentum that goes into
particle-hole loop is not precisely zero orQ, these terms are
of order (dL)2 and therefore irrelevant in the low-energ
limit, as shown graphically in Fig. 10.

The BCS vertices mix between themselves alone at
one-loop level, and the situation is similar in that respect
the general analysis of the 2D Fermi liquid.15 The degree of
renormalization depends on the density of statesn(«) at the
shells integrated out. For later use, we consider at this p
the most general case in which the chemical potentialm does
not coincide from the start with the level of the VHS. Th
differential RG equations take then the form

L
]VI

]L
5cn~m2L!~VI

21VU
2 !, ~6!

-
he

a-

FIG. 8. Umklapp vertices that undergo renormalization
particle-hole diagrams.
0-5
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L
]VU

]L
52cn~m2L!VIVU . ~7!

These equations were considered in Ref. 4, and they
appear at the dominant level in the RG approach of Ref.

We consider next the renormalization of the verticesEQ'

and EU' , which have also the property that they mix on
between themselves in the one-loop corrections linear indL.
These have been represented in Fig. 11. It can be che
that any other diagrams give irrelevant contributions of or
(dL)2, because they involve either a particle-hole susce
bility at momentum different fromQ or a particle-particle
susceptibility with total momentum different from zero.

FIG. 9. Particle-particle diagrams renormalizing the BCS ve
ces at the one-loop level.

FIG. 10. Picture of the high-energy shells of widthdL at a
given saddle point. The dark regions represent the contribution
particle-hole diagram whenq is the total incoming momentum.
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the latter case, for instance, it is shown in Fig. 12 that
number of intermediate states produced by integration
high-energy modes is quadratic, instead of linear indL.

The differential RG equations for the pair of vertices re

L
]EQ'

]L
52c8~EQ'

2 1EU'
2 !/~4p2t !, ~8!

L
]EU'

]L
52c8EQ'EU' /~2p2t !. ~9!

These equations were obtained in Ref. 4, where the na
Uinter and Uumk were used instead ofEQ' and EU' intro-
duced in the present paper. The same equations also
at the dominant level in the functional renormalization
Ref. 8.

-

a

FIG. 11. Particle-hole diagrams renormalizing the verticesEQ'

andEU' at the one-loop level.

FIG. 12. Same scheme as in Fig. 10. The dark regions repre
the contribution to a particle-particle diagram whenq is the total
incoming momentum.
0-6
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We now turn to the rest of the vertices,DQi , DQ' , EQi ,
DUi , DU' , andEUi , which renormalize among themselve
at the one-loop level. It is clear that the verticesDQi andEQi
cannot be distinguished from each other just by looking
the external legs. The same applies toDUi andEUi . At the
one-loop level, one can still discern whether the momentu
transferQ takes place along the same scattered fermion
or not. However, the different corrections have to organize
that the above pairs of vertices enter in the combinati
DQi2EQi andDUi2EUi , which are the quantities that mak
physical sense. In that respect, the situation is similar to w
happens with the couplingsg1i and g2i in the one-
dimensional electron systems.21

The one-loop renormalization of the vertices provides
explicit proof of the above statement. The vertexDQi gets
linear corrections indL from the diagrams shown in Fig. 13
while EQi is renormalized by the diagrams shown in Fig. 1
Their RG equations read then

L
]DQi

]L
5c8~DQi

2 1DQ'
2 1DUi

2 1DU'
2 22DQiEQi

22DUiEUi!/~4p2t !, ~10!

L
]EQi

]L
52c8~EQi

2 1EUi
2 !/~4p2t !. ~11!

FIG. 13. Particle-hole diagrams renormalizing the vertexDQi at
the one-loop level.

FIG. 14. Particle-hole diagrams renormalizing the vertexEQi at
the one-loop level.
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These two equations can be combined to be written in te
of the physical vertex,

L
]~DQi2EQi!

]L
5c8@~DQi2EQi!

21~DUi2EUi!
2

1DQ'
2 1DU'

2 #/~4p2t !. ~12!

The RG equation forDQ' also depends on the combination
DQi2EQi andDUi2EUi , since we have

L
]DQ'

]L
5c8@~DQi2EQi!DQ'1~DUi2EUi!DU'#/~2p2t !

~13!
As a final check, the equations forDUi2EUi and DU'

turn out to depend on the physical combination of couplin

L
]~DUi2EUi!

]L
5c8@~DQi2EQi!~DUi2EUi!

1DQ'DU'#/~2p2t !, ~14!

L
]DU'

]L
5c8@~DQi2EQi!DU'1~DUi2EUi!DQ'#/~2p2t ! .

~15!

As long as the above RG equations depend explicitly
the spin projection, they allow to see how the spin-rotatio
invariance can be preserved along the RG orbits. For
purpose one has to look at the response functions for the
operator, checking the conditions under which they beco
independent of the spin direction. An analysis of this ki
has been carried out in Ref. 14 considering the uniform m
netization of the system. Since we are dealing with renorm
ized interactions at large momentum-transferQ5(p,p), we
focus now on the correlations of the Fourier transform of
spin operator at that momentum transfer,Sj (Q), with j
5x,y,z.

We pay attention to the frequency dependence of the s
response functions, which can be established through t
scaling properties.22 The response functionRz(v) for the
Sz(Q) operator, for instance, is renormalized by the diagra
shown in Fig. 15. After taking the derivative with respect
the cutoff and imposing the self-consistency of the diagra
matic expansion, we obtain

L
]Rz

]L
52

2c8

p2t
1

c8

p2t
~DQi2EQi1DUi2EUi2DQ'

2DU'!Rz . ~16!

The response functionsRx(v) and Ry(v) for the other
two components of the spin operator are both renormali
by the diagrams shown in Fig. 16. Following the same p
cedure as forRz(v), we obtain

L
]Rx

]L
52

2c8

p2t
2

c8

p2t
~EQ'1EU'!Rx ~17!

and a completely similar equation forRy(v).
0-7
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The response functionsRx(v), Ry(v), andRz(v) can be
made exactly equal if the equation

DQi2EQi1DUi2EUi2DQ'2DU'52EQ'2EU'

~18!

is satisfied all along the flow. From Eqs.~8!, ~9!, ~12!–~15!,
we observe that this is automatically fulfilled when the co
dition is imposed for the initial values of the couplings.
the case of the Hubbard model, for instance, we have be
the renormalization of the couplings

DQ'1DU'2DQi1EQi2DUi1EUi5EQ'1EU'52U.
~19!

The condition~18! is actually satisfied by the bare coupling
of any Hamiltonian that is invariant under rotations. W
show in this way that, in the Wilsonian RG approach, t
SU~2! spin symmetry can be preserved at each point of
RG flow of the couplings.

The RG equations that we have obtained can be con
ered as a first step towards a functional renormalization
the interaction vertices. These depend on the momenta o
incoming and outgoing particles, and it is natural that th
may be renormalized with different strength under differe
regimes of the momenta. We have taken into account

FIG. 15. First-order contributions to the correlator of theSz

operator.

FIG. 16. First-order contributions to the correlators of theSx and
Sy operators.
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channels that develop the strongest divergences in the
sonian RG approach. Restricting the analysis to the forwa
scattering, the exchange and the BCS kinematics, the re
malization program can be carried out self-consistently w
a reduced number of couplings.

In Ref. 8, a scheme has been proposed to go beyond
consideration of the channels with special kinematics, by
signing a number of generic couplings to the interaction v
tices when the momenta of the particles do not fall within t
restrictive conditions. Although the RG equations of the co
plings for the special kinematics get corrections from t
generic couplings, it turns out that the asymptotic behav
of the solutions is completely determined by the former s
The couplings calledg2

x and g3
x in Ref. 8 correspond pre

cisely to our couplingsEQ andEU , while those called there
g3

BCS andg4
BCS correspond to our definitions forVU andVI ,

respectively. At the dominant level, that is keeping the dom
nant terms which give the divergent asymptotic behavior,
RG equations of Ref. 8 for the mentioned couplings coinc
with our Eqs.~6!–~9!. The rest of our RG equations provid
the extension to the more involved situation in which t
couplings depend explicitly on the spin projection.

Certainly, a more satisfactory RG approach should try
keep some form of continuity in the momentum depende
of the renormalized vertices. Between the couplings for
special kinematics and those which apply to generic dis
butions of the momenta, there should be incorporated
intermediate instances which may still develop some deg
of divergence. It is not likely that the most refined RG equ
tions may lead to different results regarding the domin
divergences obtained at the present stage, but a true f
tional renormalization would provide the definitive che
that the divergences in the interaction vertices develop
localized distributions of the momenta, specially in wh
concerns those with the highest critical scale.

IV. SPIN AND SUPERCONDUCTING INSTABILITIES

If one were to take the bare couplingU of the Hubbard
model as the initial point of the RG scaling, the set of E
~6! and~7! would not provide interesting physics. This is s
because we would have in such caseVI5VU5U, and send-
ing the cutoff to zero would simply reduce monotonically t
interactions in these channels. However, the diagonals in
space of couplings mark the boundary between the region
stable and unstable scaling. The slightest perturbation w
VI,VU will make the couplings to grow large, pointing a
the appearance of new features in the system.

An interesting effect comes from the fact that, even in t
Hubbard model, there are corrections that vanish in the lo
energy limitL→0 ~irrelevant operators! but may drive to the
unstable regime at the early stages of the scaling. The Ko
Luttinger effect, that leads to a pairing instability in th
Fermi liquid at very low energies,23 can be established on th
same grounds in the RG framework.15 In the case of the
Hubbard model, the corrections toVI and VU are given by
the horizontal iteration of the bubble diagrams in Fig. 1
The momentum flowing to the bubbles is not in general clo
to 0, in the first case, nor toQ, in the second. In the Wilso
0-8



fo
nt

ba
u
on
e
s
h
o
s.

te

tia

e
d
g.
i-
i

s
i

l
t.
e
y

lu
d
e
it
r
e

e

le
ar
x
c
o

c

ro-
ing

le-
m,
n of
gap
s.
ood
the
is

d

e of
al
nal

a
tial
ise
mi
ns
the

al

pa-
sed

th

sta-
a-
he
re-
vail.
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nian RG scheme, these particle-hole bubbles scale there
as ;(dL)2, and they are considered irreleva
contributions.15

In the Hubbard model witht8,0.276t, the corrections
coming from the iteration of diagram~a! in Fig. 17 have
smaller strength than those from diagram~b!.4 As long as
these are antiscreening diagrams, i.e., they add to the
repulsive interaction, the conditions are met to have an
stable scaling for the vertices in Fig. 6, with the above c
straint ont and t8. The singular behavior develops for th
combinationVI2VU , in which the particle-particle diagram
build up a pole for an imaginary value of the frequency. T
physical interpretation is that there is a condensation of C
per pairs at the scale where the vertex function diverge24

The symmetry of the order parameter turns out to bed-wave,
as the combinationVI2VU corresponds to having opposi
amplitudes in the two saddle-points.

In our approach, the scaling of the chemical poten
m(L) allows to deal with a finite density of states in Eqs.~6!
and ~7! during the RG flow. The result of computing th
scale at whichVI2VU diverges, for a value of the Hubbar
couplingU54t and t850.16t, has been represented in Fi
18. A singularity is only found for values of the bare chem
cal potentialm05m(L0) that lead to attraction of the Ferm
level to the VHS. The curve of the critical scale reache
maximum for a certain value of optimal doping, and then
decreases for smaller values ofm0 as the chemical potentia
is not precisely pinned to the VHS in the low-energy limi

The instability in the BCS channel has to be match
against the strong tendency towards a magnetic instabilit
wave-vectorQ5(p,p) for t8,0.276t.4 In the RG frame-
work, this comes from the divergent behavior of the so
tions of Eqs.~8!, ~9!, ~12!–~15!, in the case of the Hubbar
model with U.0. As shown in the preceding section, th
spin-rotational invariance is preserved along the RG orb
We can therefore carry out the analysis of the solutions fo
given choice of the spin projection, in particular for th
EQ'1EU' channel that governs the correlations of theSx
andSy operators. In the low-energy limit, a singularity in th
couplings is reached at a certain value ofL. The important
point is that the logarithmically divergent particle-ho
bubbles building up the singularity have an imaginary p
equal toip/2 timesc8/(4p2t), which means that the verte
gets actually a pole for an imaginary value of the frequen

Thus, the divergence in this channel gives rise to the c
densation of particle-hole pairs with momentumQ. This
physical interpretation is similar to that of the supercondu

FIG. 17. Particle-hole corrections to the BCS vertices in
Hubbard model.
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ing instability,24 but the presence in this case of a mac
scopic number of particle-hole pairs leads to nonvanish
expectation values of the typeU*d3k^CA↑

1 (k)CB↓(k1Q)&
[D, Cas(k) being the electron field operator at sadd
point a. This has a drastic effect in the low-energy spectru
since the electron propagator is corrected by the insertio
the condensate as shown in Fig. 19. The result is that a
of magnitudeuDu opens up in the spectrum of quasiparticle
The appearance of this gap takes place in the neighborh
of the saddle-points. It can be shown that the size of
Fermi line destroyed by the nesting of such points
&AuDu/t8, in units of the inverse lattice spacing.

The point at which the vertexEQ'1EU' diverges can be
estimated from Eqs.~8! and~9!, and it has been represente
in Fig. 18 for our particular choicet850.16t. The scale of
condensation of particle-hole pairs is larger than the scal
the superconducting instability up to the point of optim
doping marked by the peak of the latter. In our computatio
framework, the energy scale of the former instability has
constant behavior as a function of the bare chemical poten
m0. This is due to the fact that, in the absence of a prec
knowledge of the renormalization of the complete Fer
line, we can only discern that the particle-hole correctio
diverge whenever the Fermi level remains pinned to
VHS. In the range of values ofm0 displayed in Fig. 18 down
to m0'0.29, the final renormalized values of the chemic

FIG. 19. Self-consistent equation for the dressed electron pro
gator G in the particle-hole condensate, in terms of the undres
propagatorsGA

(0) andGB
(0) at the two inequivalent saddle-points.

e

FIG. 18. Plot of the energy scale of the superconducting in
bility ~thin line! and of the transition to the phase with spin inst
bility ~thick line!. This phase is given by the shaded region in t
diagram, while the region to its right and below the thin line cor
sponds to the phase where the superconducting correlations pre
0-9
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potential lie very close to the level of the VHS, as observ
in Fig. 4. Then we may assume, as a first approximation,
the scaling towards the magnetic instability is equally stro
over that range ofm0. This assumption breaks down whe
the renormalized chemical potential departs from the V
by an amount comparable to the own gap that would a
from the instability. When this happens, it can be assured
the scaling is arrested before the singularity in the magn
response function is reached. This marks the boundary o
magnetic phase atm0'0.29.

In a more accurate description of a real system, it is c
ceivable that the energy scale giving the onset of the m
netic instability may have a smooth dependence on the d
ing level. This may arise from the renormalization of thet8
parameter in the process of pinning of the Fermi level. T
analysis requires however the knowledge of the dynamic
the whole Fermi surface, and it goes beyond the pres
computational framework.

At this point, it may be convenient to establish a relati
between the values ofm0 and the band fillings resulting in
the case that the system were closed instead of being in
tact with the charge reservoir fixing the value ofm0. To draw
a continuous correspondence, we have determined the
filling given by the Fermi level that would be obtained fro
m0 upon a conventional renormalization due to the inter
tion ~as in the upper and the lower curve of Fig. 4!. The
results are represented in Fig. 20, wheren stands for the band
filling of the 2D system.

For low doping levels, the opening of a gap of magnitu
uDu is the effect that prevails, and the renormalization of
interactions is stopped at that energy scale. On the o
hand, the superconducting instability takes over beyond
optimal doping. This point corresponds to the situati
where the chemical potential remains closer to the VHS d
ing its RG flow while, at the same time, the deviation of t
final renormalized value already becomes of the same o

FIG. 20. Plot of the correspondence betweenm0 ~measured with
respect to the level of the VHS! and the band fillingn, obtained
from a constant renormalization of the bare chemical potentia
discussed in the text.
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that the gap opening up in the spectrum. As mentioned
fore, the scaling ofEQ'1EU' relies on the pinning to the
VHS and, beyond the optimal doping, it is therefore arres
before the singularity in the vertex is reached. This is
contrast to the scaling in the BCS channel, which is given
Eqs.~6! and~7! irrespective of the pinning to the VHS.15 The
strength of the superconducting instability is however mo
lated by the proximity to the VHS, and it fades away as t
final value of the renormalized chemical potential depa
sensibly from the level of the singularity.

The divergence in theEQ'1EU' channel may result in
a nonvanishing expectation value with spin projectionSx
or Sy , depending on the choice of the condensate w
function. A similar divergence in the channel wit
momentum-transfer Q and no spin-flip shows tha
U*d3k^CA↑

1 (k)CB↑(k1Q)& has also an absolute value pr
cisely equal touDu. Depending on the different combination
of phases, the spin of the condensate may point in any di
tion of the space, providing another manifestation of the
tational invariance of the Wilsonian RG scheme.

When considering the model strictly at zero temperatu
the ground state of the system is forced to choose a defi
projection of the spin. The condensation of particle-ho
pairs leads then to the spontaneous breakdown of the S~3!
invariance. As a consequence, a pair of Goldstone bos
arise corresponding to spin waves on top of the conden
of particle-hole pairs. In the regime below optimal dopin
where the magnetic instability prevails, these are the gap
excitations of the spectrum together with the quasipartic
from the regions not affected by the nesting of the sadd
points.

We have thus clarified the nature of the magnetic insta
ity that arises when the Fermi level is pinned to the VHS
the electron system. The main physical effect is the cond
sation of particle-hole pairs, which results in the opening o
gap for the quasiparticles in the neighborhood of the sad
points. This is the dominant instability up to the optim
doping marked by the peak of the scale of the supercond
ing instability, which takes over for higher doping levels.

The properties that we have discussed rely on the e
tence of an attractive fixed-point in the scaling of the chem
cal potential of the 2D system. They are therefore robus
they do not depend on fine-tuning or on the particular det
of the model, what may explain some of the universal pro
erties of the hole-doped copper-oxide superconductors. A
has been emphasized, the correct interpretation of the
results implies actually the consideration of the 2D system
contact with a charge reservoir which fixes the bare chem
potential. From a conceptual point of view, it would be ve
important to understand the mechanism of pinning of
Fermi level in a closed system. This may require the dev
opment of new techniques, able to incorporate the wh
dynamical evolution of the Fermi line in the renormalizatio
process, which is not afforded by the present computatio
schemes.
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