737 research outputs found

    Formation and structure of the microemulsion phase in two-dimensional ternary AB+A+B polymeric emulsions

    Full text link
    We present an analysis of the structure of the fluctuation-induced microemulsion phase in a ternary blend of balanced AB diblock copolymers with equal amounts of A and B homopolymers. To this end, graphical analysis methods are employed to characterize two-dimensional configuration snapshots obtained with the recently introduced Field-Theoretic Monte Carlo (FTMC) method. We find that a microemulsion forms when the mean curvature diameter of the lamellar phase coincides roughly with the periodicity of the lamellar phase. Further, we provide evidence to the effect of a subclassification of the microemulsion into a genuine and a defect-driven region.Comment: to appear in J. Chem. Phy

    “In-situ” lipase-catalyzed cotton coating with polyesters from ethylene glycol and glycerol

    Get PDF
    "Available online 12 January 2018"Several polyesters were synthesized from ethylene glycol, glycerol and adipate, succinate dimethyl esters. Immobilized Candida antarctica lipase B was used as catalyst for 6hours under vacuum at 70°C without any further solvents. The highest conversion rate of 88.5% occurred for the polymerization of poly (ethylene adipate), evaluated by 1H NMR. MALDI-TOF analysis indicated that most of the oligomers formed were dimers or trimers. After successfully synthesize the polyesters we set-up the optimal conditions for their in-situ coating onto cotton substrates with a soluble lipase from Thermomyces lanuginosus. This work presents a novel bio-approach to impart hydrophobic properties to coated cotton-based fiber materials.This work was supported by Chinese government scholarship under the State Scholarship Fund (grant number 201706790049), Jiangsu Province Scientific Research Innovation Project for Academic Graduate Students (grant number KYLX16_0788), Training Fund for Excellent Doctoral Student in Jiangnan University, Key Projects of governmental cooperation in international scientific and technological innovation (grant number 2016 YFE0115700) and the National Key R & D Program of China (grant number 2017 YFB0309100). This work was also supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (grant number POCI-01-0145-FEDER-006684) and under the Project RECI/BBB-EBI/0179/2012 (grant number FCOMP01-0124-FEDER-027462). This study was also supported by BioTecNorte operation (grant number NORTE-01-0145-FEDER000004) funded by the European Regional Development Fund under the scope of Norte2020 – Programa Operacional Regional do Norte. This work was also supported by the National Natural Science Foundation of China (grant number 31470509 and 31201134), the Industry-Academic Joint Technological Prospective Fund Project of Jiangsu Province (grant number BY2013015-24 and BY2016022-23), the fundamental research funds for the central universities (grant number JUSRP 51622A), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.info:eu-repo/semantics/publishedVersio

    Self-Assembly of Supramolecular Triblock Copolymer Complexes

    Get PDF
    Four different poly(tert-butoxystyrene)-b-polystyrene-b-poly(4-vinylpyridine) (PtBOS-b-PS-b-P4VP) linear triblock copolymers, with the P4VP weight fraction varying from 0.08 to 0.39, were synthesized via sequential anionic polymerization. The values of the unknown interaction parameters between styrene and tert-butoxystyrene and between tert-butoxystyrene and 4-vinylpyridine were determined from random copolymer blend miscibility studies and found to satisfy 0.031<χS,tBOS<0.034 and 0.39<χ4VP,tBOS<0.43, the latter being slightly larger than the known 0.30<χS,4VP≀0.35 value range. All triblock copolymers synthesized adopted a P4VP/PS core/shell cylindrical self-assembled morphology. From these four triblock copolymers supramolecular complexes were prepared by hydrogen bonding a stoichiometric amount of pentadecylphenol (PDP) to the P4VP blocks. Three of these complexes formed a triple lamellar ordered state with additional short length scale ordering inside the P4VP(PDP) layers. The self-assembled state of the supramolecular complex based on the triblock copolymer with the largest fraction of P4VP consisted of alternating layers of PtBOS and P4VP(PDP) layers with PS cylinders inside the latter layers. The difference in morphology between the triblock copolymers and the supramolecular complexes is due to two effects: (i) a change in effective composition and, (ii) a reduction in interfacial tension between the PS and P4VP containing domains. The small angle X-ray scattering patterns of the supramolecules systems are very temperature sensitive. A striking feature is the disappearance of the first order scattering peak of the triple lamellar state in certain temperature intervals, while the higher order peaks (including the third order) remain. This is argued to be due to the thermal sensitivity of the hydrogen bonding and thus directly related to the very nature of these systems.

    Time-Resolved Soft X-ray Diffraction Reveals Transient Structural Distortions of Ternary Liquid Crystals

    Get PDF
    Home-based soft X-ray time-resolved scattering experiments with nanosecond time resolution (10 ns) and nanometer spatial resolution were carried out at a table top soft X-ray plasma source (2.2–5.2 nm). The investigated system was the lyotropic liquid crystal C16E7/paraffin/glycerol/formamide/IR 5. Usually, major changes in physical, chemical, and/or optical properties of the sample occur as a result of structural changes and shrinking morphology. Here, these effects occur as a consequence of the energy absorption in the sample upon optical laser excitation in the IR regime. The liquid crystal shows changes in the structural response within few hundred nanoseconds showing a time decay of 182 ns. A decrease of the Bragg peak diffracted intensity of 30% and a coherent macroscopic movement of the Bragg reflection are found as a response to the optical pump. The Bragg reflection movement is established to be isotropic and diffusion controlled (1 ÎŒs). Structural processes are analyzed in the Patterson analysis framework of the time-varying diffraction peaks revealing that the inter-lamellar distance increases by 2.7 Å resulting in an elongation of the coherently expanding lamella crystallite. The present studies emphasize the possibility of applying TR-SXRD techniques for studying the mechanical dynamics of nanosystems

    Consequences of Grafting Density on the Linear Viscoelastic Behavior of Graft Polymers

    Get PDF
    The linear viscoelastic behavior of poly(norbornene)-graft-poly(±-lactide) was investigated as a function of grafting density and overall molar mass. Eight sets of polymers with grafting densities ranging from 0 to 100% were synthesized by living ring-opening metathesis copolymerization. Within each set, the graft chain molar mass and spacing between grafts were fixed, while the total backbone length was varied. Dynamic master curves reveal that these polymers display Rouse and reptation dynamics with a sharp transition in the zero-shear viscosity data, demonstrating that grafting density strongly impacts the entanglement molar mass. The entanglement modulus (G_e) scales with inverse grafting density (n_g) as G_e ∌ n_g^(1.2) and G_e ∌ n_g^0 in accordance with scaling theory in the high and low grafting density limits, respectively. However, a sharp transition between these limiting behaviors occurs, which does not conform to existing theoretical models for graft polymers. A molecular interpretation based on thin flexible chains at low grafting density and thick semiflexible chains at high grafting density anticipates the sharp transition between the limiting dynamical regimes

    Amphiphilic block copolymers from a renewable Ɛ-decalactone monomer: prediction and characterization of micellar core effects on drug encapsulation and release

    Get PDF
    Here we describe a methoxy poly(ethyleneglycol)-b-poly(Δ-decalactone) (mPEG-b-PΔDL) copolymer and investigate the potential of the copolymer as a vehicle for solubilisation and sustained release of indomethacin (IND). The indomethacin loading and release from mPEG-b-PΔDL micelles (amorphous cores) was compared against methoxy poly(ethyleneglycol)-b-poly(Δ-caprolactone)(mPEG-b-PCL) micelles (semicrystalline cores). The drug–polymer compatibility was determined through a theoretical approach to predict drug incorporation into hydrated micelles. Polymer micelles were prepared by solvent evaporation and characterised for size, morphology, indomethacin loading and release. All the formulations generated spherical micelles but significantly larger mPEG-b-PΔDL micelles were observed compared to mPEG-b-PCL micelles. A higher compatibility of the drug was predicted for PCL cores based on Flory–Huggins interaction parameters (χsp) using the Hansen solubility parameter (HSP) approach, but higher measured drug loadings were found in micelles with PΔDL cores compared to PCL cores. This we attribute to the higher amorphous content in the PΔDL-rich regions which generated higher micellar core volumes. Drug release studies showed that the semicrystalline PCL core was able to release IND over a longer period (80% drug release in 110 h) compared to PΔDL core micelles (80% drug release in 72 h)
    • 

    corecore