93 research outputs found

    Disturbance Facilitates Invasion: The Effects are Stronger Abroad than at Home

    Get PDF
    Disturbance is one of the most important factors promoting exotic invasion. However, if disturbance per se is sufficient to explain exotic success, then invasion abroad should not differ from colonization at home. Comparisons of the effects of disturbance on organisms in their native and introduced ranges are crucial to elucidate whether this is the case; however, such comparisons have not been conducted. We investigated the effects of disturbance on the success of Eurasian native Centaurea solstitialis in two invaded regions, California and Argentina, and one native region, Turkey, by conducting field experiments consisting of simulating different disturbances and adding locally collected C. solstitialis seeds. We also tested differences among C. solstitialis genotypes in these three regions and the effects of local soil microbes on C. solstitialis performance in greenhouse experiments. Disturbance increased C. solstitialis abundance and performance far more in nonnative ranges than in the native range, but C. solstitialis biomass and fecundity were similar among populations from all regions grown under common conditions. Eurasian soil microbes suppressed growth of C. solstitialis plants, while Californian and Argentinean soil biota did not. We suggest that escape from soil pathogens may contribute to the disproportionately powerful effect of disturbance in introduced regions

    Range-Expanding Populations of a Globally Introduced Weed Experience Negative Plant-Soil Feedbacks

    Get PDF
    BACKGROUND: Biological invasions are fundamentally biogeographic processes that occur over large spatial scales. Interactions with soil microbes can have strong impacts on plant invasions, but how these interactions vary among areas where introduced species are highly invasive vs. naturalized is still unknown. In this study, we examined biogeographic variation in plant-soil microbe interactions of a globally invasive weed, Centaurea solstitialis (yellow starthistle). We addressed the following questions (1) Is Centaurea released from natural enemy pressure from soil microbes in introduced regions? and (2) Is variation in plant-soil feedbacks associated with variation in Centaurea's invasive success? METHODOLOGY/PRINCIPAL FINDINGS: We conducted greenhouse experiments using soils and seeds collected from native Eurasian populations and introduced populations spanning North and South America where Centaurea is highly invasive and noninvasive. Soil microbes had pervasive negative effects in all regions, although the magnitude of their effect varied among regions. These patterns were not unequivocally congruent with the enemy release hypothesis. Surprisingly, we also found that Centaurea generated strong negative feedbacks in regions where it is the most invasive, while it generated neutral plant-soil feedbacks where it is noninvasive. CONCLUSIONS/SIGNIFICANCE: Recent studies have found reduced below-ground enemy attack and more positive plant-soil feedbacks in range-expanding plant populations, but we found increased negative effects of soil microbes in range-expanding Centaurea populations. While such negative feedbacks may limit the long-term persistence of invasive plants, such feedbacks may also contribute to the success of invasions, either by having disproportionately negative impacts on competing species, or by yielding relatively better growth in uncolonized areas that would encourage lateral spread. Enemy release from soil-borne pathogens is not sufficient to explain the success of this weed in such different regions. The biogeographic variation in soil-microbe effects indicates that different mechanisms may operate on this species in different regions, thus establishing geographic mosaics of species interactions that contribute to variation in invasion success

    Experimental admixture among geographically disjunct populations of an invasive plant yields a global mosaic of reproductive incompatibility and heterosis

    Get PDF
    1. Invasive species have the ability to rapidly adapt in the new regions where they are introduced. Classic evolutionary theory predicts that the accumulation of genetic differences over time in allopatric isolation may lead to reproductive incompatibilities resulting in decreases in reproductive success and, eventually, to speciation. However, experimental evidence for this theoretical prediction in the context of invasive species is lacking. We aimed to test for the potential of allopatry to determine reproductive success of invasive plants, by experimentally admixing genotypes from six different native and non‐native regions of Centaurea solstitialis, an invasive forb for which preliminary studies have detected some degree of reproductive isolation between one native and non‐native region. 2. We grew plants under common garden conditions and outcrossed individuals originating from different source populations in the native and introduced range to evaluate reproductive success in terms of seed to ovule ratio produced. We also assessed geographical and genetic isolation among C. solstitialis regions as a potential driving factor of reproductive success. 3. Experimental admixture generated mixed fitness effects, including significant increases, decreases and no differences in reproductive success as compared to crosses within population (control). Centaurea solstitialis invasive populations in the Americas generated preponderantly negative fitness interactions, regardless of the pollen source, suggesting selection against immigrants and reinforcement. Other non‐native populations (Australia) as well as individuals from the native range of Spain demonstrated an increase in fitness for between‐region crosses, indicating inbreeding. These differences show an asymmetrical response to inter‐regional gene flow, but no evidence of isolation by distance. 4. Synthesis. The speed of adaptation and the accumulation of reproductive incompatibilities among allopatric populations of invasive species might be more rapid than previously assumed. Our data show a global mosaic of reproductive outputs, showcasing an array of evolutionary processes unfolding during colonization at large biogeographical scales

    Extensive analysis of native and non-native Centaurea solstitialis L. populations across the world shows no traces of polyploidization

    Get PDF
    Centaurea solstitialis L. (yellow starthistle, Asteraceae) is a Eurasian native plant introduced as an exotic into North and South America, and Australia, where it is regarded as a noxious invasive. Changes in ploidy level have been found to be responsible for numerous plant biological invasions, as they are involved in trait shifts critical to invasive success, like increased growth rate and biomass, longer life-span, or polycarpy. C. solstitialis had been reported to be diploid (2n = 2x = 16 chromosomes), however, actual data are scarce and sometimes contradictory. We determined for the first time the absolute nuclear DNA content by flow cytometry and estimated ploidy level in 52 natural populations of C. solstitialis across its native and non-native ranges, around the world. All the C. solstitialis populations screened were found to be homogeneously diploid (average 2C value of 1.72 pg, SD = ±0.06 pg), with no significant variation in DNA content between invasive and non-invasive genotypes. We did not find any meaningful difference among the extensive number of native and non-native C. solstitialis populations sampled around the globe, indicating that the species invasive success is not due to changes in genome size or ploidy level

    Globally, plant-soil feedbacks are weak predictors of plant abundance

    Get PDF
    Plant-soil feedbacks (PSFs) have been shown to strongly affect plant performance under controlled conditions, and PSFs are thought to have far reaching consequences for plant population dynamics and the structuring of plant communities. However, thus far the relationship between PSF and plant species abundance in the field is not consistent. Here, we synthesize PSF experiments from tropical forests to semiarid grasslands, and test for a positive relationship between plant abundance in the field and PSFs estimated from controlled bioassays. We meta-analyzed results from 22 PSF experiments and found an overall positive correlation (0.12 <= r over bar <= 0.32) between plant abundance in the field and PSFs across plant functional types (herbaceous and woody plants) but also variation by plant functional type. Thus, our analysis provides quantitative support that plant abundance has a general albeit weak positive relationship with PSFs across ecosystems. Overall, our results suggest that harmful soil biota tend to accumulate around and disproportionately impact species that are rare. However, data for the herbaceous species, which are most common in the literature, had no significant abundance-PSFs relationship. Therefore, we conclude that further work is needed within and across biomes, succession stages and plant types, both under controlled and field conditions, while separating PSF effects from other drivers (e.g., herbivory, competition, disturbance) of plant abundance to tease apart the role of soil biota in causing patterns of plant rarity versus commonness

    Type II InAs/GaAsSb quantum dots: Highly tunable exciton geometry and topology

    Full text link
    External control over the electron and hole wavefunctions geometry and topology is investigated in a p-i-n diode embedding a dot-in-a-well InAs/GaAsSb quantum structure with type II band alignment. We find highly tunable exciton dipole moments and largely decoupled exciton recombination and ionization dynamics. We also predicted a bias regime where the hole wavefunction topology changes continuously from quantum dot-like to quantum ring-like as a function of the external bias. All these properties have great potential in advanced electro-optical applications and in the investigation of fundamental spin-orbit phenomena

    Reconfigurable spin-wave propagation in magnetic stripe domains in hybrid system

    Get PDF
    Resumen del trabajo presentado a la INTERMAG Conference - IEEE International Magnetics, celebrada on-line del 26 al 30 de abril de 2021.Very recently magnetic stripe domains, characterized by alternating up and down out-of-plane orientation of the magnetization, have received great interest due to the possibility to use stripe patterns to manipulate spin-wave (SW) propagation as in artificial magnonic crystals. In this work, we demonstrate the control of the SW propagation by using reconfigurable regular stripe-pattern domain structure in the hybrid system. The investigated system consists of 64-nm-thick NdCo layer and 10-nm-thick NiFe layer, coupled through an Al layer of different thicknesses. Magnetic force microscopy (MFM) measurements show that, due to the perpendicular magnetic anisotropy of the NdCo film, the system develops stripe domains aligned with the last in-plane saturation direction. The domain pattern is found to have a period of about 140 nm, which is almost independent on the thickness of the Al layer. The magnetization reversal of the trilayer system was investigated by vibrating sample magnetometer, showing that the hysteresis loop is characterized by a two-step process, due to the different coercivity of the NiFe and NdCo films. Detailed analysis of the hysteresis loops along with micromagnetic simulations indicates that the stray magnetic field coming from the NdCo layer induces a regular domain structure also in the NiFe layer, which is tuned by the thickness of Al spacer. In addition, upon reversing the applied magnetic field, an antiparallel state, characterized by an antiparallel alignment of the magnetization component parallel to the domain axis in the NdCo and NiFe stripes, is formed. Then, Brillouin light scattering spectroscopy has been used to measure the spectra of the SWs propagating in the direction perpendicular to stripe domains for the parallel and the antiparallel state. For both configurations, the dispersion relation shows a strongly nonreciprocal mode. However, in the parallel state SWs propagating with positive and negative wavevector are both characterized by a positive dispersion, while in the reversed state SWs propagating with negative wavevector show a negative dispersion. The above experimental results have been satisfactorily reproduced by numerical simulations. The latter show that the detected SW mode is mainly localized in the NiFe layer and its frequency nonreciprocity can be ascribed to the static magnetization configuration as well as to the interaction with the NdCo induced by the SWs via the dynamic stray field.PID2019-104604RBPeer reviewe

    Non-CO2 generating energy shares in the world : cross-country differences and polarization.

    Get PDF
    The aim of this paper is to examine the spatial distribution of non-CO2 generating energy sources in the world for the period 1990–2009, paying special attention to the evolution of cross-country disparities. To this end, after carrying out a classical convergence analysis, a more thorough investigation of the entire distribution is presented by examining its external shape, the intra-distribution dynamics and the long-run equilibrium distribution. This analysis reveals the existence of a weak, rather insignificant, convergence process and that large crosscountry differences are likely to persist in the long-run. Next, as polarization indicators are a proper way of appraising potential conflict in international environmental negotiations, we test whether, or not, the distribution dynamics concurs with the presence of polarization. Our results indicate that two poles can be clearly differentiated, one with high and other with low non-CO2 generating energy shares. In view of these findings, and to ensure a fair transition to a sustainable energy system, the paper calls for the development of an ambitious clean energy agenda, especially in countries with low non-CO2 generating energy shares

    Tuning topological defects in magnetic stripe domains of lateral multilayers with perpendicular magnetic anisotropy

    Get PDF
    Resumen del póster presentado a la VIII Edición de la Reunión Bienal del Grupo Especializado de Física del Estado Sólido de la Real Sociedad Española de Física celebrada del en Ciudad Real del 22 al 24 de enero de 2014.Peer Reviewe

    Estudo fitoquímico de folhas de Solanum lycocarpum A. St.-Hil (Solanaceae) e sua aplicação na alelopatia

    Get PDF
    (Phytochemistry of Solanum lycocarpum A.St.–Hil (Solanaceae) leaves and their application in allelopathy). Solanum lycocarpum A.St.-Hil (Solanaceae) is a typical shrub in the Cerrado of central Brazil. The allelopathic activity of aqueous extracts of the leaves and fruits of this species has already been proven in previous studies. The goal of this work was to verify the allelopathic activity of different leaf extracts of S. lycocarpum on the germination and growth of four target species. The leaves were collected, dried, triturated and submitted to two distinct methods of extraction: 1- liquid--liquid (ethyl acetate and dichloromethane) from the aqueous extract and 2- with solvents of increasing polarities (hexane, dichloromethane, ethyl acetate, acetone, methanol and water) directly from the leaves. Each extraction was made with ultrasound equipment for one hour, filtered and evaporated. From these extracts, solutions of 800, 400 and 200 ppm were prepared, and water and Logran® were used as positive and negative controls, respectively. Each solution, as well as the controls, was dissolved in DMSO for the bioassays. The target species used were lettuce, watercress, tomato and onion. To each plate, 20 seeds were added and 1 mL of the tested solutions (with 4 repetitions). The plates were incubated at 25 oC without light, and the shoots and roots of the seedlings were then measured and the percentage of germination and the inhibition of each extract were calculated. Tomato was the most sensitive to the extracts, followed by watercress, onion and lettuce. The extracts with stronger activity were AcOEt, acetone and the liquid-liquid extraction, indicating the fractions that may contain the active principles of the leaves in this species
    corecore