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Non-CO2 generating energy shares in the world: Cross-

country differences and polarization 

 

 
Abstract: The aim of this paper is to examine the spatial distribution of non-CO2 

generating energy sources in the world for the period 1990-2009, paying special 

attention to the evolution of cross-country disparities. To this end, after carrying out a 

classical convergence analysis, a more thorough investigation of the entire distribution 

is presented by examining its external shape, the intra-distribution dynamics and the 

long-run equilibrium distribution. This analysis reveals the existence of a weak, rather 

insignificant, convergence process and that large cross-country differences are likely to 

persist in the long-run. Next, as polarization indicators are a proper way of appraising 

potential conflict in international environmental negotiations, we test whether, or not, 

the distribution dynamics concurs with the presence of polarization. Our results indicate 

that two poles can be clearly differentiated, one with high and other with low non-CO2 

generating energy shares. In view of these findings, and to ensure a fair transition to a 

sustainable energy system, the paper calls for the development of an ambitious clean 

energy agenda, especially in countries with low non-CO2 generating energy shares.  

Keywords: non-CO2 generating energy share; distribution dynamics approach; 

polarization. 
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1. Introduction 

 

Public concern on global warming has notably increased during the last decades, to the 

point that this issue has become one of the most important challenges the world faces 

nowadays (e.g. VijayaVenkataRaman et al., 2012). This being so, it is evident that the 

use of non-CO2 generating energy sources (hereafter NCO2GES), commonly termed as 

‘clean energy’,1 should play, and is already playing, a central role in the current energy 

debate.  It is obvious that the use of this kind of energy, by reducing greenhouse gas 

emissions and dependence on oil and other exhaustible resources, could significantly 

help to mitigate climate change impacts. 

 

This, in turn, has given rise to an upsurge in the volume of empirical studies over the 

last few years, thus contributing to a much better understanding of the issue, which is at 

the basis of the United Nations Framework Convention on Climate Change (UNFCCC). 

Therefore, it is virtually impossible to acknowledge all researchers that have at some 

time dealt with this topic. In any case, it is convenient to make at least a passing 

reference to some of them just to notice that many questions have been examined, most 

of them so closely related to each other that it is really difficult to break them down into 

different groups. Some lines of research could be, however, pointed out: 1. Employment 

generation by the clean energy industry (e.g. Barrett and Hoerner, 2002; Kammen et al., 

2004; Moreno and López, 2008; Wei et al., 2010; Tourkolias and Mirasgedis, 2011; 

Böhringer et al., 2013); 2. Guidelines for the promotion of this kind of energy (e.g. 

Haines et. al, 2007; Morris et al., 2012; Pollin, 2012); 3. Overview of clean energy 

technology options and its effectiveness (e.g. Brown, 2001; Amer and Daim, 2011; van 

                                                 
1 Both terms, clean energy and non-CO2 generating energy sources, are used indistinctly in this paper. 
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Ruijven et al., 2012); 4. Economic assessment of NCO2GES (e.g. Borchers et al., 2007; 

Bollino, 2009; Scarpa and Willis, 2010); and 5. Future perspectives for the clean energy 

industry (Lund, 2010; Shafiullah et al., 2012). 

 

Despite this there are still many pending and/or poorly studied questions, one of the 

most prominent being the study of the worldwide clean energy distribution. Taking for 

granted, as we will see in the next section, that the world average share of clean energy 

has increased in the last few decades, the main aim of this paper is to contribute to the 

literature by analyzing the evolution of cross-country differences in clean energy shares. 

Although, to the best of our knowledge, no previous study has dealt with this issue yet, 

we think is very relevant. Apart from the obvious fact that the promotion of this kind of 

energy is fully required for mitigating climate change, two additional elements have to 

be considered. First that the efforts made in implementing this type of energy differ 

substantially across countries, this meaning that global warming costs have not been 

equally shared across countries (Cooper, 2012). And second that because the negative 

environmental spillovers produced by countries with low clean energy shares, it may 

happen that the environmental benefits of those countries which already have a large 

portion of NCO2GES are not wholly reaped by them. Therefore, the catching-up of 

countries with lower clean energy shares would reduce this spillover problem and 

improve environmental conditions all over the world. As stated by Cooper (2012, p. 

S29) “climate change cannot be significantly slowed through actions by the rich 

countries alone”, being necessary “the active participation of at least the largest emitters 

among the developing countries”.2  

                                                 
2 As Pretty (2013) suggests, the pathway to economic growth of developing countries does not have to be 

the same as those followed by the currently developed ones. 
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The paper also makes another contribution which is methodological in nature. Apart 

from the classical analysis of convergence, cross-country disparities in clean energy 

shares are also examined by means of the so-called distribution dynamics approach. It 

should be noticed that this latter approach has been recently applied to the analysis of 

CO2 per capita emissions (Nguyen-Van, 2005; Ezcurra, 2007; Herrerias, 2012), and the 

world electricity consumption (Maza and Villaverde, 2008). There are, however, 

important features of this paper that should be emphasized. First, weighted instead of 

unweighted estimators are used to adjust for the different size of the units of analysis 

(countries). This is a remarkable factor because, as Herrerias indicates (2012, p. 10), “by 

weighting by population, some researchers have drawn different conclusions to those 

reached via unweighted analyses”; accordingly, we restrict ourselves to population 

weighted distributions. Second, the intra-distribution dynamics analysis is carried out by 

computing a new mobility index which allows us to quantify the mobility degree; this 

index exhibits better properties than the more conventional ones previously employed in 

environmental economics. Third, along with the distribution dynamics approach, this 

paper addresses the issue of polarization (Esteban et al., 1999). As Duro and Padilla 

(2008, 2013) recently stressed, the study of polarization offers additional insights on the 

distribution dynamics relative to the existence of different groups of countries (poles) 

and, in this way, about the potential existence of a catching-up process. Furthermore, 

the notion of polarization can be used to approximate potential conflicts in 

environmental negotiations. 

 

The remainder of the paper is organized as follows. Section 2 describes data and 

stylized facts, among them the increase in the world average clean energy share over the 
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last two decades. Both a conventional and a novel analysis of convergence on this type 

of energy is provided in Section 3. In Section 4 we go deeply into the study of cross-

country disparities by examining the potential existence of polarization in the 

distribution. Finally, in Section 5 we summarize our main results and offer several 

policy suggestions.  

 

2. Data and stylized facts 

 

The information on clean energy shares used in this paper comes from the World 

Development Indicators databank published by the World Bank. According to it “clean 

energy includes noncarbohydrate energy that does not produce carbon dioxide when 

generated; it includes hydropower and nuclear, geothermal, and solar power, among 

others”.3 To be precise, information provided by the World Bank refers to ‘clean energy 

share’, namely the proportion that alternative and nuclear energy sources represents 

over total energy use. The choice of this databank lies on its reliability, as data consist 

on carefully constructed and fully comparable series between countries. 

 

The sample in this paper consists of 114 countries over the period 1990-2009, the longer 

period for which data for such a large sample of countries are available. These countries 

represent more than 98% of the world GDP in 2009. The complete list of countries is 

shown in Appendix A.1.  

 

                                                 
3 Under other definitions clean energy can also include cleaner fossil fuels such as clean coal or some low 

carbon energy sources. 
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To gain a first impression of our data, Table 1 shows the sample average of clean 

energy shares for every year in the sample. As can be seen, it goes from 5.11% in 1990 

to 6.54% in 2009, which represents an annual rate of growth of 1.3%. Although with 

some fluctuations, the increase has been quite steady over the period under study. These 

figures could be taken as a signal that, to a certain extent, international agreements in 

the battle against climate change are being fruitful.  

 

As indicated in the Introduction, however, this paper is focused on cross-country 

differences. Accordingly, Table 1 also depicts the sample countries with the three 

highest and lowest clean energy shares. This reflects remarkable differences across 

countries, some of them with values quite close (or even higher) than 100 while for 

others the use of NCO2GES is negligible. This fact is supported by the two maps in Fig. 

1, displaying countries grouped by their clean energy shares for the initial (Fig. 1a) and 

final (Fig. 1b) years of the sample period. A quick glance at this figure shows that most 

European and American countries enjoy very high clean energy shares, whereas the use 

of this energy is much less extended in Africa and Oceania. Asian countries are 

somewhere in between. By comparing 1990 and 2009 we can also see that, although on 

the whole the continental distribution is fairly stable, some notable changes at country 

have taken place. In particular there are some countries (e.g. Belgium, Canada, Finland, 

Haiti, Nicaragua, Norway, Sweden, Uruguay) characterized by having a high relative 

use of NCO2GES in 1990 that have experienced a decrease in its use (or at least a lower 

increase than the world average). On the other side, there are also some countries (e.g. 

Albania, Armenia, China, Denmark, Georgia, Greece, Ireland, Mozambique, Romania) 

where the use of this type of energy has increased quite a lot.  
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Table 1 around here 

Fig. 1 around here 

 

3. An analysis of clean energy share convergence 

 

After a cursory glance at the astonishing disparities in clean energy shares across 

countries and their evolution, this section is aimed at providing some insight into the 

existence or not of a clean energy share convergence process in the world over the 

period 1990-2009. We believe this is a crucial issue that needs to be addressed. The 

existence of a convergence process could make easier the achievement of clean energy 

agreements because it would favor the adoption of common objectives (as it is 

happening, for example, in the EU). As Padilla and Duro (2013) indicate, the evolution 

towards a distributive situation could make more likely to share positions on how to 

distribute mitigation burdens. Otherwise, it seems logical to expect that the negotiation 

process is going to be hard. 

 

To assess potential signs of convergence in clean energy shares we use two 

complementary methodologies: the classical approach and the distribution dynamics 

approach. Before starting with our analysis, an important comment regarding data is 

mandatory. It is common practice in studies on convergence to give all units of analysis 

the same weight, therefore making no distinction according to their size (see, e.g, 

Ezcurra, 2007; Maza and Villaverde, 2008; Maza et al., 2010a). Doing this would imply 

that changes in clean energy shares for each country would have the same contribution 

to the convergence/divergence process independently of its size. As a result, it would 

happen, for instance, that China (the largest country in our sample in terms of 
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population) would be clearly down-weighted while, on the contrary, Iceland (the 

smallest country) would be up-weighted. To solve this problem, our empirical analysis 

turns around the use of weighted estimators. 

 

3.1. A classical convergence approach 

 

First we apply the most conventional concept of convergence, namely that of -

convergence.4 This concept, entailing the reduction of the cross-sectional dispersion 

over time, is usually calculated by means of the most typical measure of dispersion: the 

(weighted, in our case) coefficient of variation. By normalizing its value to 100 in the 

initial year, Fig. 2 shows that clean energy share disparities, even with minor swings, 

have declined over the sample period. The coefficient of variation fell by 11% (an 

annual rate of 0.6%), this revealing the existence of a very weak process of 

convergence. 

 

For the sake of robustness (Duro, 2012), we have also computed -convergence by 

employing other inequality indicators, specifically the well-known Atkinson (A(0.5) 

and A(1)), Gini (G) and Theil (T(0) and T(1)) measures. The results are also reported in 

Fig. 2. We observe that all the inequality indicators point to roughly the same evolution 

of cross-country disparities. The differences refer mainly to the speed of convergence. 

Although always weak, this is more intense according to the Theil coefficient )1(T  

                                                 
4 The classical convergence approach is based on the seminal paper by Barro and Sala-i-Martin (1992). 

They proposed two measures of convergence,  and -convergence. As the concept of -convergence is 

less restrictive than the first one, we only show -convergence results; in fact, -convergence is a 

necessary but not sufficient condition for -convergence. 
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(which fell by 17% in the period under study, corresponding to an annual convergence 

rate of 1.0%) and less significant according to the Gini index (7% and 0.4% 

respectively).  

 

Fig. 2 around here 

 

Some of these inequality measures, and in particular the Theil index, have the property 

of being additively decomposable. Taking advantage of this, we have decomposed clean 

energy shares into a direct product of three factors: 1. Clean energy intensity (CEI), 

defined as the ratio between clean energy and GDP; 2. Economic affluence (EA), 

defined as the ratio between GDP and population; 3. The inverse of the energy per 

capita (IEPC), defined as the inverse of the ratio between population and energy use.5 

Then, we have investigated the sources of the clean energy share disparities by 

measuring the contribution of each individual factor to the total inequality (for technical 

questions, see Padilla and Duro, 2013). As can be observed in Fig. 3, in 1990 the main 

factor behind the world disparities in NCO2GES shares was the economic affluence, 

followed at a distance by clean energy intensity, while the contribution of (the inverse 

of) energy per capita was even negative. Over the period, however, the contribution of 

the inequality in economic affluence has experienced a quite stable reduction, whereas 

the contribution of clean energy intensity has increased until 2000 and slightly 

decreased since then. Put it another way, the difference in the weight of clean energy 

per unit of GDP have picked up some of the role played by differences in GDP per 

                                                 
5 Therefore, we have 
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refers to total energy use, and POP is population. 
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capita levels. In consequence, in 2009 the relative importance of the former is even 

higher than that of the latter. 

 

Fig. 3 around here 

 

Additionally, we have also applied the traditional ‘between-within’ decomposition of 

the Theil index (see also Fig. 3). Considering that in the definition of clean energy 

proposed by the World Bank both renewable and nuclear energy are found mixed 

together, we have broken down our sample of countries into two groups: those in which 

nuclear energy is the main energy source among the NCO2GES, and those in which this 

place is occupied by renewable sources.6 The results show that the between-group 

component explains less than 25% of total inequality in 1990 and only 18% in 2009. In 

other words, within-group heterogeneity is by large the main factor behind clean energy 

share disparities. The results thus indicate no substantially different behavior among 

countries depending on the source of non-CO2 generating energy that is predominant on 

them. 

 

3.2. A distribution dynamics approach 

 

Although offering important insights, the classical analysis of convergence presents 

several drawbacks (see, for example, Quah, 1996, 1997). In particular, it informs neither 

about changes in the external shape of the distribution nor about the fact that countries 

                                                 
6 Although clean energy data provided by the World Bank are not split between nuclear and renewable 

sources, we proxied them by comparing the “electricity production from nuclear sources” and the 

“electricity production from renewable sources”. 
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may shift their relative position in the distribution over time. This section tries to 

overcome these two limitations. 

 

3.2.1. External shape  

First, we focus on the external shape of the clean energy share distribution and its 

evolution. To do that we estimate weighted univariate density functions, for which a key 

element is the selection of the proper smoothing parameter or bandwidth. The role of 

this parameter is to put less weight on observations that are further from the point being 

evaluated. Although either fixed or varying bandwidths can be used, a variable one is 

especially suitable when, as in our case, data sparseness is apparent. Varying the 

bandwidth from one point to another in the sample (a large bandwidth in regions of low 

density and a small one in regions with high density) allows us to adapt the estimator to 

the local density of data. The basic idea is that, by only varying the bandwidth along the 

support of the sample data, we can reduce the variance of the estimates in areas 

characterized by the presence of few observations (potential outliers), as well as the bias 

of the estimates in areas with many observations.  

 

Accordingly, we compute a two-stage weighted adaptive kernel density estimator to 

minimize the sensitiveness of our estimations to the presence of potential outliers (for 

more details see Abramson, 1982; Goerlich Gisbert, 2003). For any variable Y this 

estimator is given by: 
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where K(.) is a kernel function (Gaussian in this case), iw are the weights associated to 

iy (
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i
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g  are the bandwidth adjustment factors, g being the 

geometric average over all i of the pilot density estimate )(ˆ yf  calculated using the 

fixed bandwidth h .7 The value of h has been chosen following Silverman’s rule of 

thumb (Silverman, 1986).  

 

Fig. 4 around here 

 

Before proceeding with the estimation, and as it is usual in order to facilitate 

comparisons and eliminate the effect of absolute changes in clean energy shares over 

time, country values are normalized to the world average (which is set equal to 100). As 

shown in Fig. 4, the results reveal that the shape of the distribution is roughly the same 

in 1990 as in 2009. It has a main mode below 50% of the average, being the range of the 

distribution quite large. In any case, some minor changes have taken place over the 

sample period. Perhaps the most noteworthy one is that there was a small bump in the 

distribution around 240% level in 1990 that has moved backwards in 2009. In terms of 

cross-country disparities, Fig. 4 does not reveal the existence of a notable process of 

convergence in NCO2GES, as both the ratio of extreme values and the concentration of 

the mass of probability around the mean have not changed significantly between 1990 

and 2009. These results complement the previous ones, thus indicating that although 

                                                 
7 This analysis was conducted by using STATA’s akdensity command. Regarding weights, we used 

analytic weights (aweight), that is, weights that are inversely proportional to the variance of each 

observation; for example, the variance of the i-th observation is assumed to be 2/wi, where wi is the 

weight, namely the population of country i. 



13 
 

there have been advances in environmental protection by increasing the use of clean 

energy, more efforts are required to attain a distribution with all countries converging 

towards a mean that is increasing year by year. 

 

3.2.2. Intra-distribution dynamics 

Albeit informative, the previous analysis fails to clarify whether changes in the external 

shape of the distribution have been accompanied by changes in the relative position of 

countries within it (intra-distribution dynamics). Although it might seem so, this is not a 

minor question as changes within the distribution can provide useful information to 

infer some additional conclusions on convergence across economies. In order to gain 

some insight into this question, in this section we apply a discrete intra-distribution 

dynamics approach, the so-called Markov chain approach. The interest lies in that it 

allows us to quantify mobility within the distribution, preserving the imperative 

necessity of weighting data properly.  

 

For it, let suppose that countries are classified into a finite number of exhaustive and 

mutually exclusive states according to their clean energy shares. Then, it is possible to 

define the distribution for these shares at times t and t+s, denoted by v(t) and s)v(t   

and commonly referred as to initial and final distributions respectively. The link 

between both distributions is given by ),()( sttPtvs)v(t  , which defines the law 

of motion of the distribution between t and t+s. A key element in that relation is the 

operator ),( sttP  , the so-called transition matrix between t and t+s with generic 

elements ),( sttpij  , as it maps the distribution from period t to period t+s. The 

interpretation of the transition matrix is particularly intuitive: its elements give the 

probability of moving from a state i to another j between t and t+s.  
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Provided the transition matrix is stationary, i.e. time-independent, so that it can be 

denoted as )(sP , the distribution is expected to converge to the so-called equilibrium 

distribution given by t
t sP )(lim  ; this provides the direction in which the 

distribution is expected to evolve if current structural factors remain unchanged (Parzen, 

1962; Durrett, 1999). As indicated by Bichenbach and Bode (2003), comparing the 

equilibrium (also called ergodic or limiting) distribution to the initial one can provide us 

information on the existence of a convergence or divergence process; specifically, 

convergence is reached when intra-distribution mobility leads to an equilibrium 

distribution with more probability mass at the middle states of the distribution.  

 

To implement this approach several types of decisions must be made, starting with the 

definition of the states. As such, following Quah (1993) and, once again, taking 100 as 

the world average, the overall percentage of clean energy on total energy use at t is 

divided into five states of equal size representing countries with low (1), middle-low 

(2), middle (3), middle-high (4) and high (5) percentages of NCO2GES.8 Another 

decision concerns the transition period length. In this case, and as is common in many 

                                                 
8 Alternative methods for the discretization of the distribution include the proposal by Scott (1979), who 

defines an optimal bin width as a function of the sample size and the standard deviation, or the proposal 

by Magrini (1999) based on the minimization of an error measure. These methods of boundary selection, 

however, may lead to having a disproportionate number of states, some of them, as indicated by Bosker 

(2009), with very few observations. 
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applications on intra-distribution dynamics, we opted for estimating a five-year 

transition matrix (s = 5).9 

 

Table 2 reports the number of observations and upper bounds of each state, the 

estimation of the five-year transition matrix, the initial and equilibrium distributions, 

and a measure of the speed of the system in approaching this limiting distribution called 

the asymptotic half-life (Shorrocks, 1978).10 All estimations are based on maximum 

likelihood. Beginning with the transition matrix, it deserves to be highlighted that 

estimated values of transition probabilities along the main diagonal are relatively high, 

this being indicative of high persistence in countries' shares of NCO2GES. In addition, 

among countries which change their relative position within the distribution there is no 

clear predominance of either upward or downward movements. In view of these 

findings, we conclude that a process of convergence is virtually negligible. Moreover, a 

straightforward comparison of the equilibrium distribution with the initial one reveal 

that if current mobility patterns persist in the future, the long-term tendency will be that 

24.9% of the sample countries will reach medium percentages of clean energy, while 

the equilibrium mass for the rest of states will slightly decrease or keep unchanged. 

Therefore changes in the dynamics of the distribution are not expected to be large, so 

that we can expect that country differences will persist in the future. Finally, the speed 

                                                 
9 Whereas a one-year transition period, for example, would imply a very low degree of mobility and 

emerging patterns would be really difficult to detect, a longer transition period would lead, in the case of 

discrete-time estimation, to a noteworthy loss of information. 

10 Before proceeding with the estimation, we first tested for the existence of Markovian dependence using 

the 2 −test proposed by Anderson and Goodman (1957). The results lead us to reject the null hypothesis 

of non-Markovian dependence at the 5% significant level (p−value=0.000), this implying we can properly 

compute a transition matrix.  
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of convergence equals to 11.257 (this value corresponds to about 11.257*556 years), 

which indicates that the convergence process is expected to be very slow. 

 

Table 2 around here 

 

As indicated before, one reason that makes the Markov chain approach especially 

appealing is that scalar summary indices of mobility can be derived.11 Here we resort to 

a novel mobility measure formulated by Maza et al. (2010b), this being the first time it 

is applied to the environmental field. This measure basically consists on an extension of 

Bartholomew’s (1996) family of mobility measures that allows us to account for the 

different population size across countries in the sample, its expression being as 

follows:12 

 


i j ijiji
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dpp
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)(     (2) 

 

where ip  are population shares for clean energy states at t;13 ijp  denote transition 

probabilities between t and t+s; ijij yyd   are absolute differences between the 

average percentage of clean energy between states at t; and, finally, ik  denotes the 

                                                 
11 An excellent, comprehensive survey -and application- of these mobility indices can be seen in Duro 

(2013). 

12 For the sake of simplicity the equations of the paper contain no reference to time. 

13 In the original version of the mobility index proposed by Maza et al. (2010b) the element ip  is defined 

as the proportion of countries in each state at t. This definition implied weighting all transitions equally 

irrespective of countries' size. 
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largest value of each row in matrix D (distances matrix with generic elements ijd ). This 

mobility measure is perfectly bounded between 0 and 1, and its interpretation is 

straightforward: the closer its value to 1, the higher the mobility degree within the 

distribution. 

 

As for the degree of mobility of each state separately, the aggregate measure in equation 

(2) can be decomposed into the so-called state-by-state measures, denoted by )( iPd , 

that is: 

 

 i ii PdpPd )()(     (3) 

where  

 j ijij
i

i dp
k

Pd
1

)(     (4) 

 

Note that, as defined in equation (2), the essence of maximum mobility (i.e, )(Pd =1) is 

that countries change their relative position within the distribution moving either 

upward or downward towards the more distanced clean energy state. As it is obvious, it 

is practically impossible for such situation to occur. Then and for the sake of 

interpretation, we have carried out several simulations to determine reasonable bounded 

values for )(Pd  in order to properly discriminate between high, medium and low 

mobility degrees. On the basis of these simulations, Table 3 summarizes the criteria set 

for establishing a reasonable scale for mobility. 

 

Table 3 around here 
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Bearing this in mind, we have first obtained the normalized distance matrix, that is, the 

matrix containing distances with all the elements divided by the factor ik (see Table 4). 

A quick glance shows that normalized distances are appreciably shorter for the first 

three than for the last two states; this is because upper bounds in the first group of states 

are tighter than in the second one.  

 

Table 4 around here 

 

Table 5 reports the population shares and values for the state-by-state and aggregate 

indexes. The results provide a numeric support to the conclusions drawn in previous 

sections. According to the aggregate measure )(Pd , of 0.043, mobility within the 

distribution can be qualified as low, this reinforcing the need of additional efforts to 

bring about a change to a more equal distribution of clean energy shares. In addition, a 

look into the state-by-state indices allows us to go more deeply into this result. As a 

feature of note the middle-high state of the distribution reaches the highest mobility 

(0.111). It is also worth noting that low and middle-low clean energy states display 

significantly low levels of mobility; in this case, despite some movements from these 

states to even non-contiguous states can be observed (see Table 2), low relative 

distances make the contribution of such transitions to total mobility to be almost 

negligible. Therefore, efforts to prevent climate change should be especially carried out 

by countries with a low use of clean energy sources, what could open up a debate about 

the urgent implementation of specific environmental policies and actions in them. 

Indeed, looking at the outcomes of recent climate actions it seems that policies devoted 

to foster diversification of primary energy sources have not been developed to a large 

scale in this group of countries. 
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Table 5 around here 

 

4. An analysis of clean energy share polarization 

 

The analysis carried out in Section 3 concluded that the process of cross-country 

convergence in clean energy shares, if it exists, is extremely weak. Additionally, it has 

been shown that high persistence in the relative position of countries is another key 

characteristic of the distribution. At this point, a question that comes to mind is whether 

this persistence has coexisted with changes in polarization levels. This is quite a 

relevant issue from an environmental point of view because if the distribution is highly 

polarized -this meaning that there exist various groups (poles) of countries with similar 

characteristics and important differences between groups-, the different groups could 

have conflicting interests and therefore hinder international environmental negotiations. 

In other words, negotiations to reach consensus among countries could be slower or 

even broken off at any time.  

 

The study of polarization has undergone few but significant methodological advances 

since the early 1990s, among which those of Esteban and Ray (1994) and Esteban et al. 

(1999, 2007) –henceforth ER and EGR, respectively– have been undoubtedly the most 

widely used in empirical analysis. Traditionally, polarization analysis has been applied 

to income and/or productivity data (see, for instance, Duro, 2005; Ezcurra et al., 2007; 

Hierro and Maza, 2009), but more recently it has also found application to other 

contexts, such as migration (Hierro et al., 2012) and CO2 emissions (Duro and Padilla, 
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2008, 2013). The purpose of this section is to apply this methodology to NCO2GES 

data. 

 

To that end, let us consider a clean energy share distribution defined by f , and a 

partition of it that defines r non-overlapping groups as intervals of clean energy shares 

 ii zz ,1 , with ri ...,,1 . The ER (1994) measure of polarization, commonly referred to 

as the simple polarization measure, is defined as follows: 

 

    
 

r

i

r

j

ji
ji

yy
ppER

1 1

1


      (5) 

 

where, for the purpose of the present study, ip  and jp  denote population shares for 

country groups i and j, iy  and jy are clean energy shares for groups i and j,   is the 

world average clean energy share and, finally,   is a parameter measuring the degree of 

sensitivity of the index to polarization; this falls in the interval [1, 1.6]. 

 

As indicated, the computation of  ER  requires the distribution to be previously pre-

arranged in r groups or intervals and then replacing clean energy share data within a 

group by the group mean. This causes an obvious problem. The lesser is the number of 

groups, the bigger is the value of ER. This is because the ER index does not take into 

account that, as some intra-group dispersion is to be expected, the partition of the 

distribution causes a loss of distributional information and, for this reason, it provokes 

an error of approximation when computing polarization through the ER measure. To 

solve this drawback, EGR (1999) proposed an extended version of the ER polarization 

measure given by: 
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      EREGR ,     (6) 

 

As can be seen, this measure comprises two addends. First, the ER polarization 

measure. Second, the approximation error  , its purpose being to capture the loss of 

information caused by grouping the distribution. This element is in turn modulated by a 

parameter 0  that reflects the sensitivity of the index to the groups’ level of 

cohesion. . 

 

The  ,EGR  index has better properties than the  ER  index. According to the 

EGR index definition, polarization in a distribution may increase either due to growing 

heterogeneity between groups derived from a larger distance in terms of clean energy 

shares between extreme groups (measured by  ER ), or because, as a result of more 

identified groups, homogeneity within groups is higher and intra-group dispersion is 

lower (so that   decreases).  

 

In order to define the specification error  , it is necessary to return to the question of 

the grouping arrangement. Once the number of groups r is chosen exogenously, the 

following decision concerns the partition of the distribution and, therefore, the location 

of groups. But, which is the optimal partition of the distribution? EGR (1999) proposed 

to choose as optimal grouping the partition that minimizes the specification error and 

therefore intra-group dispersion. Taking the Gini coefficient as a benchmark measure of 

inequality, we can define the specification error as sGG  , where G  and sG  are the 

Gini coefficients of the original (i.e. ungrouped) and the optimally grouped distribution, 
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respectively. Therefore, the final expression for the EGR polarization measure is as 

follows: 

 

     
 

r

i

r

j s
ji

ji GG
yy
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

    (7) 

 

with groups’ means and population shares defined for the optimal partition of the 

distribution.  

 

After the polarization measure has been defined, some remarks are compulsory before 

proceeding to its computation. The first one regards to the number of groups considered. 

As previously mentioned, one of the main goals of this section is to assess the 

likelihood of conflict in environmental negotiations. According to Esteban and Ray 

(1999), it depends, among other things, on the number of poles. For this reason, we 

consider the cases of 2, 3 and 4 groups.14 The second remark refers to the lack of 

consensus on the value of  ; for robustness reasons and following the most common 

choice on this issue, here we have chosen values of 1, 1.3 and 1.6. The third and last one 

is related to the value of  ; in this case there is general agreement that this value must 

be close to 1, so that we have chosen 1 .  

 

Table 6 reports the results obtained. As can be noted, although with some ups and 

downs, a decrease in polarization has occurred over the sample period, irrespective of 

the number of groups and the value of  . Additionally, the reduction in the level of 

                                                 
14 Empirical evidence has revealed that there is not significant increase in the explanatory power when 

more than 4 groups are taken into account. 
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polarization is quite similar, going from 11% for the case of four groups and 1  to 

16.7% for the case of two groups and 6.1 . Regarding the evolution of polarization, 

however, the three-group case is quite singular as it shows a notable increase in the level 

of polarization over the sample period, albeit vanishing at the end.  

 

Table 6 around here 

 

Table 7 provides further insights into the role played by polarization between groups 

and homogeneity between them on the polarization trend. These results show that 

decreasing bipolarization has been almost due to a fall in polarization between groups. 

Indeed, if we take a look at the specification error, intra-group dispersion, despite some 

swings, has slightly declined (0.6%), this entailing groups becoming internally more 

homogeneous and therefore increasing, for this side, the degree of polarization. On the 

contrary, when three and four groups are considered we can observe that the intra-

grouped dispersion increased in a non negligible way along the sample period (3.7% 

and 6.8%, respectively), so that in this case the specification error also contributed, 

although to a lesser extent than polarization between groups, to the reduction of 

polarization. 

 

Table 7 around here 

 

Furthermore, Table 8 reports both population and clean energy shares. As can be 

observed there were not significant changes in population shares over the sample 

period, but only a small transfer of population from the first to the rest of groups. It is 

worth mentioning, anyway, the three-group case, as there was a very significant transfer 
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of population from the second to the first group in the mid 1990s, but the same 

movement in the opposite direction took place in the mid 2000s. China is behind this 

fact, which explains the increase in the level of tripolarization mentioned above. From 

the point of view of clean energy shares, another salient feature is that distances 

between groups’ means have progressively diminished over the period, albeit at a slow 

pace. This allows us to explain, on the one hand, the falling levels of polarization 

between groups obtained in Table 6 and, on the other, the existence of a weak 

convergence process in NCO2GES. 

 

Table 8 around here 

 

At this point, and to properly link polarization to the notion of conflict, we should ask 

an important question: what level of polarization better conforms to reality? To answer 

it, and following the suggestion made by Duro and Padilla (2008), a useful criterion is 

based on the value of EGR. This being so, we can assert that bipolarization seems to be 

the best way to describe the clean energy share distribution, as the EGR always takes the 

highest value in this case. This statement is also supported by the fact that the split of 

the distribution into two groups of countries contributes to explaining (ratio Gs/G) 

almost 80% of the cross-country differences, which is quite a significant percentage. As 

it is obvious, the consideration of three or four groups increases this percentage (to 

almost 90 and 95% respectively), but the value of the EGR index indicates that the 

smaller aggregation error does not compensate the smaller heterogeneity between 

groups. In this matter, bipolarization seems to be the main feature of the world clean 

energy share distribution. As a good picture of reality, Appendix A.2 reports the list of 

countries that make up these two groups for the final year (2009) of our sample. 
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With all these considerations in mind, what could be said about conflict in 

environmental negotiations? Here we have mixed results. On the one hand, that 

negotiations will continue being really difficult because of the existence of strong 

bipolarization.15 As Esteban and Ray (1999, p. 402) indicate, “there is a two-point 

symmetric distribution of population which globally maximizes conflict”. Although this 

is not the case, as the two groups are not equally populated, it is true that differences 

between them are quite remarkable.16 On the other hand, however, the world is moving 

towards a weaker bipolarization degree, which in return may reduce conflict potential 

over time. There are two other facts supporting this belief: first, that the decrease in 

polarization rested on a fall in polarization between groups; second, that distances 

between groups were even higher two decades ago than they are today. Additionally, it 

is important to note that the reduction in polarization is especially intense from 1997 

onwards, coinciding with climate change initiatives taken under the UNFCCC and the 

initial adoption of the Kyoto Protocol. 

 

5. Concluding remarks and policy implications 

 

The promotion of non-CO2 generating energy sources constitutes the best strategy to 

cope with global warming, one of the most important challenges mankind faces not only 

nowadays but, most probably, also in the future. Therefore, unveiling the main 

                                                 
15 To this respect, Montini (2011) highlights that one of the major problems surrounding the present 

climate change regime is the challenge of fragmentation of negotiations. 

16 In the last year of our sample, for example, the group characterized by low clean energy share reached 

only 42% of the world average, while the high clean energy share group reached 234% of the world 

average. 
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characteristics of the world clean energy share distribution seems to be of paramount 

importance. To the best of our knowledge, however, this topic has not been 

conveniently addressed in the literature. By means of using both traditional and novel 

approaches, this is, precisely, the gap we have tried to fill in this paper for a sample of 

114 countries over the period 1990-2009. After briefly describing data, the following 

conclusions emerge from the analysis: 

 

First, classical analysis of -convergence has shown that, whatever the inequality 

measure, cross-country disparities in clean energy shares have only slightly decreased 

over time; to be precise, the annual speed of convergence was around 0.6%. Put it in 

another way, some efforts in promoting NCO2GES have not led to a noticeable 

reduction in cross-country disparities. Regarding the contribution of different factors to 

total inequality, per capita GDP disparities play a quite remarkable role, although their 

contribution decreased over time. It seems, therefore, that it is necessary to achieve a 

strong correlation between GDP per capita levels and the efforts required to the 

different countries in order to increase the perceived fairness of environmental 

agreements.  

 

Second, the distribution dynamics approach has revealed that the shape of the 

distribution did not changed significantly over time. In addition, it has been found that: 

1. Persistence, or reduced mobility, is the main trait of the distribution; 2. The low 

mobility degree observed has not contributed to convergence, as there are countries with 

initially high (low) levels of NCO2GES that have improved (worsened) their relative 

positions over the time span; 3. Large cross-country disparities are expected to persist in 

the foreseeable future.  
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Finally, the paper has examined the polarization degree in the distribution. This is an 

interesting issue because measures of polarization appraise, in a better way than 

inequality indices, the potential conflict, and this is, without any doubt, a timely issue. It 

will be mandatory in the next coming years to achieve agreements between countries 

that tend to form groups in order to increase their negotiation power in designing 

climate change policies. The paper found that a noticeable bipolarization is the 

predominant feature; this notwithstanding, the bipolarization degree declined over time. 

In other words, the catching-up of countries with lower clean energy shares suggested 

by Cooper (2012) has in fact taken place, although at a degree far from the required one. 

This reduction in bipolarization was just the consequence of the decreasing polarization 

between groups, as the internal cohesion within groups slightly increased over the 

sample period. According to these findings, we can assert that the distribution of 

NCO2GES conveys a better situation for facilitating international agreements on 

mitigation policies in 2009 than in 1990, this being specially true since 1997 (Kyoto 

Protocol). Differences between groups are, however, still notable, so it is foreseeable 

that there will be high tension in the negotiations between groups of countries with 

opposing interests. This might be so especially because drastic reductions in 

greenhouse-gas emissions are and will be required to stabilize atmospheric gases at 

reasonable levels. 

 

Now, bearing in mind that the use of NCO2GES to face climate change is inevitable 

and that climate change cannot be significantly mitigated through country-specific 

actions (see e.g. Golombek and Hoel, 2011), how can we interpret our results? Our 

opinion is that they give rise to a word of warning. Firstly, because they clearly show 



28 
 

that the world is not committed to a well-orchestrated strategy in seeking a global shift 

to a green economy in which clean energy shares account for a high portion of the total 

energy used in every country.17 Secondly because, although we are well aware that our 

findings cannot be taken as a face-value long term forecast of the world clean energy 

share distribution, they suggest that the extent of disparities and the relative position of 

the countries in the distribution will most probably persist in the future. Therefore, if we 

agree that is necessary to keep a convergence process and, if possible, speed up the pace 

of rising clean energy share in the world in order to mitigate climate change, the paper 

calls for a major impulse to NCO2GES promotion, mostly in those countries where 

efforts up to now have been quite weak and/or fruitless.  

 

Therefore, it seems clear that a change of direction is needed, and this is not an easy 

task at all. Although it is true that the use of NCO2GES have gained legitimacy in the 

political arena, yet perception of clean energy as just a ‘complementary’ source of 

energy still remains. This is even more so because of the recent Japanese nuclear 

disaster that has put more pressure on countries that have relied up to now on nuclear 

power as an alternative to non-clean energy sources. Assuming this is not enough in 

itself, it happens that in times of constrained public finances there might be even more 

political reluctance to confront the energy dilemma in a more definitive fashion. Under 

this adverse scenario, what should be really important for all of us is that conventional 

economic growth (namely, GDP and consumption growth) is no longer the primary 

political goal, giving way to the use of technologies that promote “clean growth” and 

well-being gain (Pretty, 2013). In other words, politicians should be aware that the costs 

                                                 
17 For an excellent paper studying the conditions to achieve an unilateral climate action see Bosetti and 

De Cian (2013). 
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of NCO2GES are low compared to the benefits, and that the overall (monetary and non-

monetary) costs to society of non-clean energy sources are high. If so, policymakers 

will be convinced of the need to search for new formulas in favor of clean energy, 

among which these have already attracted some attention. First, the introduction of a 

zero tariff for green electricity to make fossil fuel energy more expensive in relative 

terms; this policy was implemented in The Netherlands in 1996.18 Second, the existence 

of a more stable legal framework to reduce market uncertainties and to generate 

confidence among market actors. Third, the promotion of clean energy-based 

technologies; South Korea is a good example with technologies such as space solar 

power and polymer electrolyte fuel cells. Fourth, the removal of administrative 

bottlenecks. Fifth, the implementation of eco-compensation schemes; China is a clear 

illustration of this sort of tool. And finally, the seek for a better climate change 

governance regime commanded by an international institution that promotes effective 

coordination of the existing multilateral agreements and related initiatives (Montini, 

2011). 

 

  

                                                 
18 An alternative option could be to increase taxes on CO2 emissions. But, according to Sinn (2007, 2008) 

arguments, this would lead to the well-known Green paradox. For a revision of this paradox see Spinesi 

(2012). 
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Appendix A.1: List of countries 

 
Albania Georgia New Zealand 
Algeria Germany Nicaragua 
Angola Ghana Nigeria 
Argentina Greece Norway 
Armenia Guatemala Pakistan 
Australia Haiti Panama 
Austria Honduras Paraguay 
Azerbaijan Hungary Peru 
Bangladesh Iceland Philippines 
Belarus India Poland 
Belgium Indonesia Portugal 
Bolivia Iran, Islamic Rep. Romania 
Bosnia and Herzegovina Iraq Russian Federation 
Brazil Ireland Serbia 
Bulgaria Israel Slovak Republic 
Cameroon Italy Slovenia 
Canada Jamaica South Africa 
Chile Japan Spain
China Jordan Sri Lanka 
Colombia Kazakhstan Sudan 
Congo, Dem. Rep. Kenya Sweden 
Congo, Rep. Korea, Dem. Rep. Switzerland 
Costa Rica Korea, Rep. Syrian Arab Republic 
Cote d'Ivoire Kyrgyz Republic Tajikistan
Croatia Latvia Tanzania 
Cuba Lebanon Thailand 
Cyprus Lithuania Togo 
Czech Republic Luxembourg Tunisia 
Denmark Macedonia, FYR Turkey 
Dominican Republic Malaysia Ukraine
Ecuador Mexico United Kingdom 
Egypt, Arab Rep. Moldova United States 
El Salvador Morocco Uruguay 
Estonia Mozambique Uzbekistan 
Ethiopia Myanmar Venezuela, RB 
Finland Namibia Vietnam
France Nepal Zambia 
Gabon Netherlands Zimbabwe 
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Appendix A.2: Country clusters 

Low clean energy share High clean energy share 
Algeria Albania 
Angola Argentina 
Australia Armenia 
Azerbaijan Austria 
Bangladesh Belgium 
Belarus Bosnia and Herzegovina 
Bolivia Brazil 
Cameroon Bulgaria 
China Canada 
Congo, Dem. Rep. Chile 
Congo, Rep. Colombia 
Cote d'Ivoire Costa Rica 
Cuba Croatia 
Cyprus Czech Republic 
Denmark Ecuador 
Dominican Republic El Salvador 
Egypt, Arab Rep. Finland
Estonia France 
Ethiopia Georgia 
Gabon Germany 
Ghana Hungary 
Greece Iceland 
Guatemala Indonesia 
Haiti Japan
Honduras Kenya 
India Korea, Rep. 
Iran, Islamic Rep. Kyrgyz Republic 
Iraq Latvia 
Ireland Lithuania 
Israel Mozambique 
Italy Namibia 
Jamaica New Zealand 
Jordan Nicaragua 
Kazakhstan Norway 
Korea, Dem. Rep. Panama 
Lebanon Paraguay 
Luxembourg Peru 
Macedonia, FYR Philippines 
Malaysia Romania 
Mexico Russian Federation 
Moldova Slovak Republic 
Morocco Slovenia 
Myanmar Spain 
Nepal Sweden 
Netherlands Switzerland 
Nigeria Tajikistan 
Pakistan Ukraine 
Poland United Kingdom 
Portugal United States 
Serbia Uruguay 
South Africa Venezuela, RB 
Sri Lanka Zambia 
Sudan  
Syrian Arab Republic  
Tanzania  
Thailand  
Togo 
Tunisia  
Turkey  
Uzbekistan  
Vietnam  
Zimbabwe  
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Table 1 
Non-CO2 generating energy share (%) 
 

Year Average Maximum Minimum 

Country                                 % Country                                  % 

1990 5.11 
Sweden 50.87

Iceland 67.04

Paraguay 76.03
 

Belarus 0

Cyprus 0

Estonia 0
 

1991 5.19 
Sweden 52.26

Iceland 70.1

Paraguay 79.5
 

Belarus 0

Cyprus 0

Estonia 0
 

1992 5.21 
Sweden 49.33

Iceland 68.31

Paraguay 73.86
 

Belarus 0

Cyprus 0

Estonia 0
 

1993 5.37 
Sweden 48.23

Iceland 68.36

Paraguay 82.31
 

Cyprus 0

Estonia 0

Belarus 0.01
 

1994 5.60 
Tajikistan 57.91

Iceland 67.77

Paraguay 87.3
 

Cyprus 0

Estonia 0

Belarus 0.01
 

1995 5.64 
Tajikistan 56.41

Iceland 69.44

Paraguay 92.21
 

Estonia 0

Belarus 0.01

Cuba 0.05
 

1996 5.67 
Tajikistan 59.35

Iceland 67.67

Paraguay 95.89
 

Estonia 0

Belarus 0.01

Algeria 0.05
 

1997 5.68 
Tajikistan 55.08

Iceland 69.26

Paraguay 100.05
 

Estonia 0

Belarus 0.01

Algeria 0.03
 

1998 5.81 
Tajikistan 54.06

Iceland 70.31

Paraguay 101.41
 

Belarus 0.01

Estonia 0.01

Algeria 0.07
 

1999 5.88 
Tajikistan 59.27

Iceland 73.98

Paraguay 108.55
 

Belarus 0.01

Estonia 0.01

Algeria 0.07
 

2000 6.08 
Tajikistan 56.13

Iceland 74.33

Paraguay 119.48
 

Belarus 0.01

Estonia 0.01

Algeria 0.02
 

2001 6.23 
Tajikistan 57.57

Iceland 75.65

Paraguay 99.45
 

Belarus 0.01

Estonia 0.01

Algeria 0.02
 

2002 6.18 
Tajikistan 61.26

Iceland 74.9

Paraguay 106.72
 

Belarus 0.01

Estonia 0.01

Algeria 0.02
 

2003 6.14 
Tajikistan 64.75

Iceland 75.02

Paraguay 112.3
 

Belarus 0.01

Estonia 0.03

Algeria 0.07
 

2004 6.23 
Tajikistan 59.8

Iceland 74.72

Paraguay 111.52
 

Belarus 0.01

Estonia 0.05

Cuba 0.06
 

2005 6.30 
Tajikistan 62.1

Iceland 75.66

Paraguay 107.08
 

Belarus 0.01

Cuba 0.05

Estonia 0.13
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2006 6.37 
Tajikistan 59.06

Iceland 78.3

Paraguay 110.12
 

Belarus 0.01

Algeria 0.05

Cuba 0.07
 

2007 6.28 
Tajikistan 56.57

Iceland 80.62

Paraguay 106.71
 

Belarus 0.01

Algeria 0.05

Moldova 0.09
 

2008 6.34 
Tajikistan 54.48

Iceland 82.87

Paraguay 106.38
 

Belarus 0.01

Tunisia 0.06

Algeria 0.07
 

2009 6.54 
Tajikistan 58.61

Iceland 84.23

Paraguay 99.45
 

Belarus 0.01

Algeria 0.07

Cuba 0.12
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Fig. 1. Non-CO2 generating energy sources: % of total energy use 

 

a) 1990 
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b) 2009
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Fig. 2. -convergence 
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Fig. 3. Inequality decomposition (Theil Index) into explanatory factors 

 
Note: CEI = Clean Energy Intensity; EA = Economic Affluence; IEPC = Inverse of the Energy Per 
Capita; BT = Between-groups; WT = Within-groups 
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Fig. 4. Density functions 
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Table 2  
Estimated five-year transition matrix, equilibrium distribution and asymptotic half-life  

 

Observations Upper 
bound 

States 
Transition probabilities ݌௜௝ሺݐ, ݐ ൅ 5ሻ 

1 2 3 4 5 

342 19,40 1 0.827 0.158 0.000 0.015 0.000 
342 50,33 2 0.167 0.699 0.120 0.012 0.003 
342 122,92 3 0.003 0.105 0.792 0.094 0.006 
342 291,45 4 0.000 0.000 0.146 0.784 0.070 
342 ൅∞ 5 0.000 0.000 0.003 0.082 0.915 

Initial distribution ݒ௧  0.200 0.200 0.200 0.200 0.200 
Equilibrium distribution  0.179 0.181 0.249 0.201 0.190 

Asymptotic half life 11.257 
Note: Observations in the first column are the number of country/year pairs beginning in the respective 
state at t. The four first upper bounds correspond to the 4 quintiles, so that the total of 1,710 observations 
is divided into five states with equal number of observations. Due to rounding, rows of the transition 
matrix and both the initial and equilibrium distributions do not always add up exactly to unity. 
  



46 
 

Table 3 
Characterization of mobility degree 
 

Mobility degree Condition Bounds 

High 
More than 50% of countries move to 

a contiguous state 
݀ሺܲሻ ൒ 0.112 

Medium 
Between 25% and 50% of countries 

move to a contiguous state 
0.056 ൑ ݀ሺܲሻ ൏ 0.112 

Low 
Less than 25% of countries move to 

a contiguous state 
݀ሺܲሻ ൏ 0.056 
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Table 4 
Normalized distance matrix  

 

States 
Normalized distances ݀௜௝ 

1 2 3 4 5 
1 0.000 0.041 0.128 0.319 1.000 
2 0.042 0.000 0.092 0.290 1.000 
3 0.147 0.101 0.000 0.218 1.000 
4 0.468 0.408 0.279 0.000 1.000 
5 1.000 0.959 0.872 0.681 0.000 

 

 

Table 5 
Population shares, state-by-state and aggregate mobility indexes 

 
௜ 0.118 0.481݌ 0.149 0.190 0.062

݀ሺ ௜ܲሻ 0.011 0.024 0.037 0.111 0.058

݀ሺܲሻ 0.043 
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Table 6 
Extended polarization measure  1, EGR     

 

Years 
EGR (=1) EGR (=1.3) EGR (=1.6) 

k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4 
1990 0.3306 0.2597 0.2339 0.2589 0.1690 0.1502 0.2027 0.1047 0.0946 
1991 0.3389 0.2597 0.2358 0.2660 0.1681 0.1514 0.2088 0.1033 0.0954 
1992 0.3348 0.2561 0.2304 0.2621 0.1655 0.1463 0.2051 0.1013 0.0905 
1993 0.3525 0.3326 0.2214 0.2770 0.2554 0.1373 0.2177 0.1995 0.0810 
1994 0.3252 0.3075 0.2230 0.2536 0.2350 0.1436 0.1972 0.1825 0.0904 
1995 0.3325 0.2891 0.2193 0.2603 0.2066 0.1384 0.2036 0.1472 0.0849 
1996 0.3388 0.3006 0.2188 0.2660 0.2231 0.1381 0.2089 0.1671 0.0841 
1997 0.3344 0.3087 0.2417 0.2622 0.2359 0.1638 0.2055 0.1833 0.1112 
1998 0.3268 0.2941 0.2372 0.2561 0.2174 0.1596 0.2006 0.1622 0.1074 
1999 0.3389 0.3103 0.2381 0.2682 0.2362 0.1608 0.2131 0.1826 0.1082 
2000 0.3187 0.3134 0.2424 0.2499 0.2406 0.1628 0.1962 0.1879 0.1093 
2001 0.3034 0.2925 0.2303 0.2334 0.2224 0.1549 0.1780 0.1718 0.1041 
2002 0.3054 0.2940 0.2072 0.2353 0.2237 0.1283 0.1799 0.1729 0.0763 
2003 0.2956 0.2787 0.2206 0.2269 0.2068 0.1453 0.1727 0.1549 0.0948 
2004 0.2929 0.2816 0.2229 0.2233 0.2096 0.1463 0.1681 0.1576 0.0952 
2005 0.2875 0.2771 0.2193 0.2200 0.2067 0.1443 0.1667 0.1559 0.0943 
2006 0.2879 0.2719 0.2213 0.2207 0.2012 0.1461 0.1676 0.1502 0.0960 
2007 0.2833 0.2144 0.2207 0.2174 0.1351 0.1474 0.1653 0.0790 0.0984 
2008 0.2817 0.2241 0.2049 0.2157 0.1434 0.1295 0.1636 0.0862 0.0789 
2009 0.2857 0.2273 0.2081 0.2202 0.1455 0.1309 0.1688 0.0874 0.0798 

Variation 
(%) 

-13.6 -12.5 -11.0 -14.9 -13.9 -12.8 -16.7 -16.5 -15.7 

  



49 
 

 

Table 7 
Extended polarization measure  1, EGR  by components: Simple polarization  ER  and lack of identification   
 

Years 
ER (=1) ER (=1.3) ER (=1.6)  

k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4 
1990 0.4496 0.3219 0.2661 0.3778 0.2312 0.1823 0.3216 0.1669 0.1268 0.1190 0.0622 0.0322 
1991 0.4557 0.3232 0.2678 0.3827 0.2316 0.1834 0.3256 0.1668 0.1274 0.1168 0.0635 0.0320 
1992 0.4551 0.3212 0.2661 0.3823 0.2306 0.1820 0.3253 0.1664 0.1262 0.1202 0.0651 0.0357 
1993 0.4650 0.3885 0.2705 0.3895 0.3114 0.1863 0.3301 0.2555 0.1301 0.1125 0.0560 0.0490 
1994 0.4397 0.3678 0.2591 0.3680 0.2954 0.1797 0.3116 0.2428 0.1265 0.1144 0.0604 0.0361 
1995 0.4449 0.3496 0.2553 0.3727 0.2672 0.1745 0.3160 0.2078 0.1210 0.1124 0.0605 0.0360 
1996 0.4495 0.3590 0.2603 0.3768 0.2814 0.1796 0.3197 0.2255 0.1256 0.1107 0.0583 0.0415 
1997 0.4458 0.3719 0.2846 0.3736 0.2991 0.2066 0.3169 0.2464 0.1540 0.1114 0.0632 0.0428 
1998 0.4391 0.3520 0.2797 0.3684 0.2753 0.2021 0.3130 0.2201 0.1499 0.1124 0.0579 0.0425 
1999 0.4490 0.3697 0.2900 0.3784 0.2955 0.2127 0.3233 0.2420 0.1601 0.1102 0.0594 0.0519 
2000 0.4354 0.3693 0.2760 0.3666 0.2965 0.1964 0.3129 0.2439 0.1429 0.1167 0.0559 0.0336 
2001 0.4173 0.3522 0.2693 0.3473 0.2821 0.1938 0.2919 0.2314 0.1431 0.1139 0.0597 0.0390 
2002 0.4209 0.3557 0.2436 0.3508 0.2854 0.1648 0.2954 0.2345 0.1128 0.1155 0.0617 0.0365 
2003 0.4124 0.3408 0.2616 0.3437 0.2689 0.1863 0.2895 0.2170 0.1358 0.1168 0.0621 0.0410 
2004 0.4110 0.3411 0.2575 0.3414 0.2690 0.1809 0.2862 0.2170 0.1297 0.1181 0.0594 0.0346 
2005 0.4044 0.3359 0.2533 0.3370 0.2656 0.1783 0.2836 0.2148 0.1283 0.1169 0.0588 0.0340 
2006 0.4043 0.3337 0.2546 0.3371 0.2631 0.1794 0.2840 0.2121 0.1292 0.1164 0.0619 0.0333 
2007 0.4001 0.2831 0.2535 0.3341 0.2038 0.1803 0.2821 0.1477 0.1313 0.1167 0.0687 0.0329 
2008 0.4002 0.2886 0.2431 0.3342 0.2079 0.1676 0.2822 0.1507 0.1171 0.1186 0.0645 0.0381 
2009 0.4040 0.2918 0.2424 0.3385 0.2099 0.1653 0.2871 0.1519 0.1142 0.1183 0.0645 0.0344 

Variation 
(%) 

-10.1 -9.4 -8.9 -10.4 -9.2 -9.4 -10.7 -9.0 -10.0 -0.6 3.7 6.8 
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Table 8 
Population shares ip  and clean energy shares relative to the average iy  

 

Years 
2 groups 3 groups 4 groups 

ଶ 1y݌ ଵ݌  2y ଷ 1y݌ ଶ݌ ଵ݌  2y 3y ସ 1y݌ ଷ݌ ଶ݌ ଵ݌ 2y 3y 4y
1990 0.709 0.291 0.366 2.544 0.399 0.375 0.225 0.216 0.663 2.951 0.386 0.319 0.179 0.117 0.210 0.546 1.652 3.851
1991 0.707 0.293 0.356 2.556 0.385 0.383 0.232 0.208 0.628 2.928 0.382 0.325 0.173 0.121 0.207 0.530 1.669 3.817
1992 0.708 0.292 0.357 2.558 0.393 0.384 0.224 0.214 0.659 2.967 0.382 0.315 0.192 0.111 0.208 0.515 1.694 3.898
1993 0.698 0.302 0.334 2.542 0.637 0.227 0.136 0.292 1.390 3.662 0.381 0.319 0.219 0.081 0.217 0.477 1.832 4.494
1994 0.696 0.304 0.368 2.446 0.640 0.233 0.127 0.333 1.380 3.655 0.390 0.334 0.196 0.080 0.255 0.555 1.838 4.435
1995 0.699 0.301 0.363 2.477 0.562 0.230 0.208 0.297 0.907 3.005 0.387 0.308 0.196 0.110 0.257 0.489 1.661 3.879
1996 0.701 0.299 0.358 2.502 0.601 0.256 0.143 0.307 1.213 3.525 0.387 0.314 0.219 0.079 0.256 0.487 1.800 4.464
1997 0.700 0.300 0.363 2.486 0.645 0.222 0.133 0.333 1.342 3.655 0.165 0.509 0.207 0.119 0.137 0.413 1.519 3.816
1998 0.704 0.296 0.376 2.481 0.600 0.249 0.151 0.323 1.138 3.466 0.166 0.504 0.204 0.126 0.136 0.426 1.440 3.728
1999 0.717 0.283 0.374 2.587 0.636 0.224 0.140 0.327 1.283 3.599 0.162 0.517 0.225 0.095 0.122 0.417 1.628 4.169
2000 0.715 0.285 0.391 2.525 0.643 0.218 0.139 0.335 1.316 3.581 0.162 0.480 0.218 0.139 0.122 0.407 1.316 3.581
2001 0.676 0.324 0.383 2.290 0.638 0.220 0.141 0.361 1.305 3.410 0.165 0.497 0.214 0.124 0.126 0.456 1.443 3.579
2002 0.682 0.318 0.382 2.322 0.641 0.218 0.141 0.358 1.321 3.428 0.359 0.323 0.195 0.124 0.259 0.520 1.515 3.594
2003 0.682 0.318 0.395 2.296 0.612 0.246 0.142 0.354 1.240 3.374 0.175 0.482 0.215 0.128 0.150 0.459 1.419 3.499
2004 0.669 0.331 0.386 2.243 0.612 0.244 0.144 0.354 1.226 3.362 0.180 0.462 0.222 0.137 0.152 0.451 1.333 3.434
2005 0.681 0.319 0.406 2.266 0.616 0.243 0.141 0.368 1.228 3.367 0.190 0.467 0.214 0.129 0.165 0.480 1.379 3.487
2006 0.683 0.317 0.408 2.275 0.612 0.243 0.144 0.369 1.187 3.357 0.185 0.470 0.207 0.138 0.156 0.481 1.319 3.414
2007 0.688 0.312 0.419 2.284 0.385 0.407 0.208 0.299 0.726 2.830 0.191 0.481 0.211 0.117 0.163 0.502 1.453 3.587
2008 0.689 0.311 0.419 2.285 0.386 0.402 0.212 0.272 0.756 2.792 0.384 0.306 0.226 0.084 0.271 0.606 1.644 4.015
2009 0.700 0.300 0.423 2.345 0.390 0.390 0.220 0.263 0.755 2.738 0.371 0.322 0.185 0.122 0.254 0.605 1.545 3.490

 

 


