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ABSTRACT
Centaurea solstitialis L. (yellow starthistle, Asteraceae) is a Eurasian native plant
introduced as an exotic into North and South America, and Australia, where it
is regarded as a noxious invasive. Changes in ploidy level have been found to be
responsible for numerous plant biological invasions, as they are involved in trait shifts
critical to invasive success, like increased growth rate and biomass, longer life-span, or
polycarpy. C. solstitialis had been reported to be diploid (2n= 2x = 16 chromosomes),
however, actual data are scarce and sometimes contradictory. We determined for
the first time the absolute nuclear DNA content by flow cytometry and estimated
ploidy level in 52 natural populations of C. solstitialis across its native and non-native
ranges, around the world. All the C. solstitialis populations screened were found to
be homogeneously diploid (average 2C value of 1.72 pg, SD = ±0.06 pg), with no
significant variation in DNA content between invasive and non-invasive genotypes.
We did not find any meaningful difference among the extensive number of native and
non-native C. solstitialis populations sampled around the globe, indicating that the
species invasive success is not due to changes in genome size or ploidy level.
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INTRODUCTION
Changes in ploidy level have been reported to be important for the invasive success of some
plants species (Te Beest et al., 2011), by alteringmorphological, physiological and ecological
parameters which can confer hybrid vigor, stress resistance, competitive advantages, or
increased phenotypic plasticity, like in the case of the North American tetraploids of
Centaurea stoebe L. (Hahn, Buckley & Müller-Schärer, 2012). Additionally, there are a
series of associated ‘‘genome size constrained traits’’, related mostly to reproduction
and dispersal, which dictate the ecological niche a species can access (Te Beest et al.,
2011). In contrast, several studies support the hypothesis that a smaller genome can
contribute to some species invasive potential by boosting early plant growth and enhancing
competitive ability (Bennett, Leitch & Hanson, 1998; Grotkopp et al., 2004; Beaulieu et
al., 2007; Lavergne, Muenke & Molofsky, 2010; Suda et al., 2015). For instance, Phalaris
arundinacea L. (reed canary grass, Poaceae) in the USA underwent a quick and significant
reduction in genome size compared to the native European genotype, which was correlated
with some advantageous phenotypic effects and enhanced aggressiveness (Lavergne, Muenke
& Molofsky, 2010). A list comparing the ploidy level of 128 worst invasive plant species
worldwide, was recently made available by Te Beest et al. (2011), indicating that a quarter
of them possess at least two different ploidy levels. An interesting example is C. stoebe
(spotted knapweed) which occurs both as a diploid and tetraploid, with only the latter
cytotype becoming invasive in the Western parts of the USA (Mráz et al., 2011). However,
for many invasive species, ploidy levels and genome size are unknown or have not been
thoroughly investigated.

Centaurea L. is one of the most species rich genera in the Asteraceae (Bremer, 1994).
Numerous Centaurea species have been introduced into new non-native regions, where
many of them have become invasive. For instance, the US Federal Noxious Weeds list
(USDA, NRCS, The PLANTS Database, 2017), includes no fewer than 13 taxa, but ploidy
level for many of these is unknown or uncertain. In particular, C. solstitialis is a Eurasian
native annual herb which was introduced into the Americas and Australia during the
last two centuries (Barker et al., 2017) and became an impactful invader in the former
case. In the invaded ranges, C. solstitialis forms dense stands that displace native plants
species and reduce considerably livestock grazing capacity and forage value (Eagle et al.,
2007). It alters ecosystem functions by depleting soil water and nutrients through an
extensive root system (DiTomaso, 2000), and can cause a neurological disorder in horses
similar to human Parkinson (Chang et al., 2011). As an economically important plant,
the species has been the subject of intensive research, and significant differentiation
between native and non-native ranges have been reported for plant size (Eriksen et al.,
2012; Graebner, Callaway & Montesinos, 2012; García et al., 2013; Dlugosch et al., 2015),
growth rates (Graebner, Callaway & Montesinos, 2012), germination (Hierro et al., 2009),
competitive ability (Montesinos & Callaway, 2017), and reproduction (Montesinos, Santiago
& Callaway, 2012), among others. Such changes suggest diverging local adaptation
occurring among native and non-native ranges, and hypothetical changes in genome
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size and ploidy level could be potentially responsible for at least some of the observed
trait-shifts.

Until now, only three genome size estimates were available in the literature for C.
solstitialis: two from the native range (Bulgaria: 1.74 pg/2C, one accession, in Bancheva &
Greilhuber, 2006; and Croatia: 1.95 pg/2C, five accessions, inCarev et al., 2017) and another
from an invasive population in western USA: 1.66 pg/2C, thirty accessions (Miskella, 2014).
Based on these few studies, C. solstitialis had been reported to be diploid (Dlugosch et al.,
2013; Rice et al., 2015) with 2n= 2x = 16 chromosomes. However, records of 2n= 2x = 18
chromosomes were published more than 30 years ago from the native range of Bulgaria
(Jasiewicz & Mizianty, 1975; Kuzmanov, Jurukova-Grancarova & Georgieva, 1990) and
recently from one accession from Sicily and the other one from Sardinia (Widmer et al.,
2007). Furthermore, Inceer, Hayirlioglu-Ayaz & Ozcan (2007) reported tetraploids in seeds
(single accession) sampled in northern Turkey, but none of those observations, made in
only a handful of individuals, have been confirmed since then. Consequently, it was still
unclear whether ploidy could have played a role in at least some of the C. solstitialis invaded
ranges. To fill this knowledge gap for such an important species, we aimed to thoroughly
sample and assess C. solstitialis ploidy level and genome size in a representative number
of populations from around the world, including native Turkey, the ancestral origin of
the species; native Spain, the main source of American populations; and all the known
non-native regions represented by Argentina, Chile, USA and Australia.

METHODS
Seed collection
A total of 477 accessions from 52 natural populations (Table S1) of C. solstitialis were
investigated in this study, for genome size and ploidy level assessment. Within the native
area, we sampled ten populations from Turkey, near the Caucasus region, where high
genetic diversity has been detected, and is regarded as the site of origin of the species
(Wagenitz, 1955; Gerlach, 1997a; Uygur et al., 2004; Dlugosch et al., 2013; Eriksen et al.,
2014), and ten populations from Spain, considered as the primary source of seeds to have
colonized Chile and Argentina (Hijano & Basigalup, 1995; Eriksen et al., 2012; Eriksen et al.,
2014; Dlugosch et al., 2013; Barker et al., 2017) in the nineteenth century (Gerlach, 1997b).
For the non-native regions, we included ten populations from Argentina and California,
eight from Australia and four from Chile. Seeds were extracted from mature flower heads
collected in the wild from ten individuals per population between 2009 and 2014. Ten seeds
from each individual were germinated in plant growing trays, under common greenhouse
conditions, in early spring 2016 at the Botanical Garden of the University of Coimbra,
Portugal.

Flow cytometry
Young and intact leaves of 4–6 weeks-old plants were sampled and screened by flow
cytometry. Since analyses were based on leaves of small plants, which were destroyed by
leaf sampling, no voucher specimens could be collected. Nuclei were isolated following
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the chopping method of Galbraith et al. (1983). Briefly, about 1 cm2 of leaf tissue was co-
choppedwith a razor blade together with the same amount of reference standard (Raphanus
sativus L. ‘Saxa’, 2C = 1.11 pg, Doležel, Sgorbati & Lucretti, 1992) in 1 mL of woody plant
buffer (WPB): 0.2 M Tris×HCl, 4 mM MgCl2×6H2O, 2 mM EDTA Na2×2H2O, 86
mM NaCl, 10 mM sodium metabisulfite, 1% polyvinylpyrrolidone (PVP-10) (w/v) and
1% Triton X-100 (v/v), with pH of the buffer adjusted to 7.5 (Loureiro et al., 2007). The
resulting homogenate was filtered through a 50 µm nylon filter into a sample tube to
remove large debris. Nuclei were stained with 50 mg/mL propidium iodide (PI; Fluka,
Buchs, Switzerland), and 50 mg/ml of RNAse (Fluka, Buchs, Switzerland) was added to
prevent the staining of double stranded RNA. Samples were kept at room temperature and
analyzed immediately on a Partec CyFlow Space flow cytometer (Partec GmbH, Görlitz,
Germany) equipped with a 532 nm green solid-state laser, operating at 30 mW.

Data collection and analysis
Results were acquired using Partec FloMax software (v2.4d) (Partec GmbH, Münster,
Germany) in the form of six graphics: fluorescence pulse integral in linear scale (FL);
forward light scatter (FS) vs. side light scatter (SS), both in logarithmic (log) scale; FL vs.
time; FL vs. fluorescence pulse height; FL vs. FS in log scale and FL vs. SS in log scale.
Mean fluorescence values and coefficient of variation (CV value) of the fluorescence
of both sample and standard were obtained for at least 1,300 nuclei in each G1 peak,
whenever possible. Samples with CV values above 5% were discarded, prepared and ran
again. At least three individuals from every population were used to estimate genome size
(Table S2), in different days, to account for the variation generated by the flow cytometer.
The remaining individuals were analyzed in pool (three or four individuals) to determine
ploidy level (Table S2), only. The absolute DNA content of a sample was calculated based
on the following formula: 2C nuclear DNA content of the sample = (sample G1 peak
mean)/(standard G1 peakmean)× 2CDNA content of standard. Descriptive statistics were
calculated for genome size data (mean, standard deviation of the mean, standard error,
coefficient of variation and minimum and maximum values) using Microsoft Excel 2016.
Differences in average genome size values among regions were assessed by means of Linear
Mixed-Effect Models with the formulation of Laird & Ware (1982), with a region as fixed
factor and population within region as a random nested factor, in R-3.2.0 (R Development
Core Team, 2010). Data was plotted in BoxPlotR (Spitzer et al., 2014).

RESULTS
Analysis of fresh leaf tissue sampled from seedlings germinated from wild seeds of
individuals from 52 populations from Turkey, Spain, Argentina, Chile, USA and Australia
(Table S1), showed no significant differences in genome size (F5,44 = 0.58; p= 0.716)
among regions (Fig. 1). All individuals (N = 477) were found to be diploid, presumably
with 2n= 16 chromosomes. Average genome size ranged from 1.70 pg/2C (SD= 0.06 pg)
in Australia and Spain (SD= 0.06 pg) to 1.71 pg/2C (SD= 0.06 pg) in Chile, 1.72 pg/2C
(SD= 0.06 pg) in Argentina and California (SD= 0.07 pg) and 1.73 pg/2C (SD= 0.07 pg)
in Turkey (Table 1).
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Figure 1 Comparison of genome size among native and non-native genotypes of Centaurea solstitialis.
Black center lines represent the medians, crosses indicate sample means, box limits indicate the 25th and
75th percentiles, whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles, bars
show 95% confidence intervals of the means and outliers are represented by empty dots. Width of the
boxes is proportional to the square root of sample size, n= 26, 28, 29, 12, 30, 24 sample points.

Genome size variation among populations within regions (Table S1) was also not
significantly different, as indicated by very small standard deviations for the intercept and
the residual obtained for the random effects (SDintercept= 0.024; SDresidual= 0.063).

DISCUSSION
We found no traces of polyploidization events in the C. solstitialis populations investigated
and geographic differences in genome size were negligible.

A previous record of isolated tetraploids (one accession) in Northern Turkey (Inceer,
Hayirlioglu-Ayaz & Ozcan, 2007) is intriguing, since further genomic sampling in the area
(e.g., less than 40 km from the initial site, Barker et al., 2017) did not validate the findings.
Further investigation is also required to clarify the reported putative hybridization (Barker
et al., 2017) with Centaurea nicaeensis L . (2n= 20 chromosomes, Guinochet & Foissac,
1962), since inter-specific hybridization does not seem to have played a significant role in
the past invasion history of C. solstitialis (Barker et al., 2017). Formerly, a single natural
hybrid of Centaurea×moncktonii CE Britton and C. solstitialis was described from Oregon,
USA (Roché & Susanna, 2010) and found to be a sterile triploid (Miskella, 2014).

The genome size value we obtained for California (1.72 pg/2C, SD= 0.07 pg) was similar
to the one previously reported for Southwestern Oregon (1.66 pg/2C, SD= 0.07 pg), by
Miskella (2014) and, overall, genome sizes were similar among the six world regions.
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Table 1 Genome size estimations in Centaurea solstitialis across the six sampled regions.

Region Genome size (2C, pg) N

Mean SD SE Min Max

Argentina 1.727 0.067 0.012 1.53 1.84 29
Australia 1.705 0.061 0.012 1.59 1.83 24
California 1.727 0.074 0.013 1.59 1.85 30
Chile 1.717 0.065 0.018 1.59 1.81 12
Spain 1.709 0.069 0.013 1.57 1.83 28
Turkey 1.737 0.070 0.013 1.60 1.88 26
Total 1.720 0.068 0.014 1.57 1.84 149

Notes.
Values are given as mean, standard deviation and standard error of the mean. The minimum and maximum values and the
number of analyzed individuals (N ) for genome size estimations are also provided.

In conclusion, our thorough sampling of the most representative native and non-native
populations across the world’s distribution of C. solstitialis indicates that its invasive
success is not due to changes in genome size or ploidy level. We cannot discard that some
individuals in some unsampled populations could present some degree of polyploidy, but
their role in invasive success, to date, would have been of minor importance.

ACKNOWLEDGEMENTS
We are grateful to Joan Vallès (Barcelona) and three other anonymous reviewers for their
valuable comments on the previous version of this manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This study was funded by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) of
the Ministério da Ciência, Tecnologia e Ensino Superior, with national funds PTDC/BIA-
PLA/0763/2014. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Portuguese Fundação para a Ciência e a Tecnologia (FCT) of the Ministério da Ciência,
Tecnologia e Ensino Superior: PTDC/BIA-PLA/0763/2014.

Competing Interests
Christopher J. Lortie is an Academic Editor for PeerJ. The authors declare there are no
competing interests.

Author Contributions
• Ramona-Elena Irimia and João Loureiro conceived and designed the experiments,
performed the experiments, analyzed the data, contributed reagents/materials/analysis
tools, wrote the paper, prepared figures and/or tables, reviewed drafts of the paper.

Irimia et al. (2017), PeerJ, DOI 10.7717/peerj.3531 6/10

https://peerj.com
http://dx.doi.org/10.7717/peerj.3531


• Daniel Montesinos conceived and designed the experiments, analyzed the data,
contributed reagents/materials/analysis tools, wrote the paper, prepared figures and/or
tables, reviewed drafts of the paper, collected plant seeds.
• Özkan Eren, Christopher J. Lortie, Kristine French, Lohengrin A. Cavieres, Gastón J.
Sotes and José L. Hierro reviewed drafts of the paper, collected plant seeds.
• Andreia Jorge performed the experiments, reviewed drafts of the paper.

Data Availability
The following information was supplied regarding data availability:

The raw data is available as a Supplementary File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.3531#supplemental-information.

REFERENCES
Bancheva S, Greilhuber J. 2006. Genome size in Bulgarian Centaurea s.l. (Asteraceae).

Plant Systematics and Evolution 257:95–117 DOI 10.1007/s00606-005-0384-7.
Barker BS, Andonian K, Swope SM, Luster DG, Dlugosch KM. 2017. Population

genomic analysis reveal a history of range expansion and trait evolution across the
native and invaded range of yellow starthistle (Centaurea solstitialis).Molecular
Ecology 26(4):1131–1147 DOI 10.1111/mec.13998.

Beaulieu JM, Moles AT, Leitch IJ, Bennett MD, Dickie JB, Knight CA. 2007. Cor-
related evolution of genome size and seed mass. New Phytologist 173:422–437
DOI 10.1111/j.1469-8137.2006.01919.x.

Bennett MD, Leitch IJ, Hanson L. 1998. DNA amounts in two samples of angiosperm
weeds. Annals of Botany 82(Suppl A):121–134 DOI 10.1006/anbo.1998.0785.

Bremer K. 1994. Asteraceae—cladistics and classification. Portland: Timber Press.
Carev I, Ruščić M, Skočibušić M, Maravić A, Silijak-Yakovlev S, Politeo O. 2017. Phy-

tochemical and cytogenetic characterization of Centaurea solstitialis L. (Asteraceae)
from Croatia. Chemistry and Biodiversity 14(2):e1600213 DOI 10.1002/cbdv.201600213.

Chang HT, RumbeihaWK, Patterson JS, Puschner B, Knight AP. 2011. Toxic equine
Parkinsonism: an immuno-histochemical study of 10 horses with nigropallidal en-
cephalomalacia. Veterinary Pathology 49(2):398–402 DOI 10.1177/0300985811406885.

DiTomaso JM. 2000. Invasive weeds in rangelands: species, impacts, and management.
Weed Science 48(2):255–265
DOI 10.1614/0043-1745(2000)048[0255:IWIRSI]2.0.CO;2.

Dlugosch KM, Cang FA, Barker BS, Andonian K, Swope SM, Rieseberg LH. 2015.
Evolution of invasiveness through increased resource use in a vacant niche. Nature
Plants 1: Article 15066 DOI 10.1038/nplants.2015.66.

Dlugosch KM, Lai Z, Benin A, Hierro JL, Rieseberg LH. 2013. Allele identification for
transcriptome based population genomics in the invasive plant Centaurea solstitialis.
G3 Genes—Genomes—Genetics 3:359–367 DOI 10.1534/g3.112.003871.

Irimia et al. (2017), PeerJ, DOI 10.7717/peerj.3531 7/10

https://peerj.com
http://dx.doi.org/10.7717/peerj.3531#supplemental-information
http://dx.doi.org/10.7717/peerj.3531#supplemental-information
http://dx.doi.org/10.7717/peerj.3531#supplemental-information
http://dx.doi.org/10.1007/s00606-005-0384-7
http://dx.doi.org/10.1111/mec.13998
http://dx.doi.org/10.1111/j.1469-8137.2006.01919.x
http://dx.doi.org/10.1006/anbo.1998.0785
http://dx.doi.org/10.1002/cbdv.201600213
http://dx.doi.org/10.1177/0300985811406885
http://dx.doi.org/10.1614/0043-1745(2000)048[0255:IWIRSI]2.0.CO;2
http://dx.doi.org/10.1038/nplants.2015.66
http://dx.doi.org/10.1534/g3.112.003871
http://dx.doi.org/10.7717/peerj.3531


Doležel J, Sgorbati S, Lucretti S. 1992. Comparison of three DNA fluorochromes for
flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum
85:625–631 DOI 10.1111/j.1399-3054.1992.tb04764.x.

Eagle AJ, EiswerthME, JohnsonWS, Schoenig SE, van Kooten CG. 2007. Costs and
losses imposed on California ranchers by yellow starthistle. Rangeland Ecology &
Management 60:369–377 DOI 10.2111/1551-5028(2007)60[369:CALIOC]2.0.CO;2.

Eriksen RL, Desronvil T, Hierro JL, Kesseli R. 2012.Morphological differentiation in a
common garden experiment among native and non-native specimens of the invasive
weed yellow starthistle (Centaurea solstitialis). Biological Invasions 7:1459–1467
DOI 10.1007/s10530-012-0172-6.

Eriksen RL, Hierro JL, Eren O, Andonian K, Török K, Becerra PI, Montesinos D,
Khetsuriani L, Diaconu A, Kesseli R. 2014. Dispersal pathways and genetic dif-
ferentiation among worldwide populations of the invasive Centaurea solstitialis L.
(Asteraceae). PLOS ONE 9:e114786 DOI 10.1371/journal.pone.0114786.

Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E.
1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science
220:1049–1051 DOI 10.1126/science.220.4601.1049.

García Y, Callaway RM, Diaconu A, Montesinos D. 2013. Invasive and non-invasive
congeners show similar trait shifts between their same native and non-native ranges.
PLOS ONE 8:e82281 DOI 10.1371/journal.pone.0082281.

Gerlach JD. 1997a.How the west was lost: reconstructing the invasion dynamics of
yellow starthistle and other plant invaders of western rangelands and natural areas.
California Exotic Pest Plant Council, Symposium Proceedings 3:67–72.

Gerlach JD. 1997b. The introduction, dynamics of geographic range expansion and
ecosystem effects of yellow starthistle (Centaurea solstitialis). Proceedings of Califor-
nian Weed Science Society 49:236–241.

Graebner RC, Callaway RM,Montesinos D. 2012. Invasive species grows faster,
competes better, and shows greater evolution toward increased size and growth than
exotic non-invasive congeners. Plant Ecology 213:545–553
DOI 10.1007/s11258-012-0020-x.

Grotkopp E, RejmánekM, SandersonMJ, Rost TL. 2004. Evolution of genome
size in Pines (Pinus) and its life-history correlates: supertree analyses. Evolution
58:1705–1729 DOI 10.1111/j.0014-3820.2004.tb00456.x.

Guinochet M, Foissac J. 1962. Sur les Caryotypes de quelques espèces du genre Centaurea
L. et leur signification taxonomique. Bulletin de la Société Botanique de France
109:373–389 DOI 10.1080/00378941.1962.10838114.

HahnMA, Buckley YM,Müller-Schärer H. 2012. Increased population growth
rate in invasive polyploid Centaurea stoebe in a common garden. Ecology Letters
15(9):947–954 DOI 10.1111/j.1461-0248.2012.01813.x.

Hierro JL, Eren O, Khetsuriani L, Diaconu A, Török K, Andonian K, Kikodze D,
Janoian L, Villarreal D, Estanga-Mollica ME, Callaway RM. 2009. Germination
responses of an invasive species in native and non-native ranges. Oikos 118:529–538.

Irimia et al. (2017), PeerJ, DOI 10.7717/peerj.3531 8/10

https://peerj.com
http://dx.doi.org/10.1111/j.1399-3054.1992.tb04764.x
http://dx.doi.org/10.2111/1551-5028(2007)60[369:CALIOC]2.0.CO;2
http://dx.doi.org/10.1007/s10530-012-0172-6
http://dx.doi.org/10.1371/journal.pone.0114786
http://dx.doi.org/10.1126/science.220.4601.1049
http://dx.doi.org/10.1371/journal.pone.0082281
http://dx.doi.org/10.1007/s11258-012-0020-x
http://dx.doi.org/10.1111/j.0014-3820.2004.tb00456.x
http://dx.doi.org/10.1080/00378941.1962.10838114
http://dx.doi.org/10.1111/j.1461-0248.2012.01813.x
http://dx.doi.org/10.7717/peerj.3531


Hijano EH, Basigalup DH. 1995.Hijano EH, Navarro A, eds. El cultivo de la alfalfa en la
República Argentina. La Alfalfa en la Argentina, INTA: Buenos Aires, 13–18.

Inceer H, Hayirlioglu-Ayaz S, OzcanM. 2007. Chromosome numbers of the twenty-two
Turkish plant species. Caryologia 60:349–357 DOI 10.1080/00087114.2007.10797958.

Jasiewicz A, Mizianty M. 1975. Chromosome numbers of some Bulgarian plants.
Fragmenta Floristica et Geobotanica 21(3):277–288.

Kuzmanov BA, Jurukova-Grancarova PD, Georgieva SB. 1990. Chromosome numbers
of Bulgarian angiosperms. Fitologiya 38:92.

Laird NNM,Ware JJH. 1982. Random-effects models for longitudinal data. Biometrics
38(4):963–974 DOI 10.2307/2529876.

Lavergne S, Muenke NJ, Molofsky J. 2010. Genome size reduction can trigger
rapid phenotypic evolution in invasive plants. Annals of Botany 105:109–116
DOI 10.1093/aob/mcp271.

Loureiro J, Rodriguez E, Doležel J, Santos C. 2007. Two new nuclear isolation buffers
for plant DNA flow cytometry: a test with 37 species. Annals of Botany 4:875–488
DOI 10.1093/aob/mcm152.

Miskella J. 2014.Hybridization between yellow starthistle (Centaurea solstitialis) and
meadow knapweed (Centaurea×moncktonii). Master’s Thesis, Oregon State
University.

Montesinos D, Callaway RM. 2017. Inter-regional hybrids of native and invasive Cen-
taurea solstitialis display intermediate competitive ability. Ecography 40(7):801–802
DOI 10.1111/ecog.02653.

Montesinos D, Santiago G, Callaway RM. 2012. Neo-allopatry and rapid reproductive
isolation. American Naturalist 180:529–533 DOI 10.1086/667585.

Mráz P, Garcia-Jacas N, Gex-Fabry E, Susanna A, Barres L, Müller-Schärer H. 2011.
Allopolyploid origin of highly invasive Centaurea stoebe s.l. (Asteraceae).Molecular
Phylogenetics and Evolution 62:612–623 DOI 10.1016/j.ympev.2011.11.006.

RDevelopment Core Team. 2010. R: a language and environment for statistical
computing. Vienna: R Foundation for Statistical Computing. Available at https:
//www.r- project.org/ (accessed on 6 June 2017).

Rice A, Glick L, Abadi S, EinhornM, Kopelman NM, Salman-Minkov A, Mayzel
J, Chay O, Mayrose I. 2015. The Chromosome Counts Database (CCDB)–a
community resource of plant chromosome numbers. New Phytologist 206:19–26
DOI 10.1111/nph.13191.

Roché CT, Susanna A. 2010. New habitats, new menaces: Centaurea× kleinii (C.mon-
cktonii× C. solstitialis), a new hybrid species between two alien weeds. Collectanea
Botanica 29:17–23 DOI 10.3989/collectbot.2010.v29.002.

Spitzer M,Wildenhain J, Rappsilber J, Tyres M. 2014. BoxPlotR: a web tool for
generation of box plots. Nature Methods 11:121–122 DOI 10.1038/nmeth.2811.

Suda J, Meyerson LA, Leitch IJ, Pyšek P. 2015. The hidden side of plant invasions: the
role of genome size. New Phytologist 205:994–1007 DOI 10.1111/nph.13107.

Irimia et al. (2017), PeerJ, DOI 10.7717/peerj.3531 9/10

https://peerj.com
http://dx.doi.org/10.1080/00087114.2007.10797958
http://dx.doi.org/10.2307/2529876
http://dx.doi.org/10.1093/aob/mcp271
http://dx.doi.org/10.1093/aob/mcm152
http://dx.doi.org/10.1111/ecog.02653
http://dx.doi.org/10.1086/667585
http://dx.doi.org/10.1016/j.ympev.2011.11.006
https://www.r- project.org/
https://www.r- project.org/
http://dx.doi.org/10.1111/nph.13191
http://dx.doi.org/10.3989/collectbot.2010.v29.002
http://dx.doi.org/10.1038/nmeth.2811
http://dx.doi.org/10.1111/nph.13107
http://dx.doi.org/10.7717/peerj.3531


Te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, KubešováM, Pyšek P.
2011. The more the better? The role of polyploidy in facilitating plant invasions.
Annals of Botany 109:19–45 DOI 10.1093/aob/mcr277.

USDA, NRCS 2017. The PLANTS Database. Greensboro: National plant data team.
Available at http:// plants.usda.gov (accessed on 10 January 2017).

Uygur S, Smith L, Nezihi Uygur F, CristofaroM, Balciunas J. 2004. Population densities
of yellow starthistle (Centaurea solstitialis) in Turkey.Weed Science 52:746–753
DOI 10.1614/WS-03-150R1.

Wagenitz C. 1955. Pollenmorphologie and Systematik in der gattung Centaurea L. s.l.
Flora 142:213–275.

Widmer TL, Guermache FG, Dolgovskaia MY, Reznik SY. 2007. Enhanced growth and
seed properties in introduced vs. native populations of yellow starthistle (Centaurea
solstitialis).Weed Science 55:465–473 DOI 10.1614/WS-06-211R.1.

Irimia et al. (2017), PeerJ, DOI 10.7717/peerj.3531 10/10

https://peerj.com
http://dx.doi.org/10.1093/aob/mcr277
http://plants.usda.gov
http://dx.doi.org/10.1614/WS-03-150R1
http://dx.doi.org/10.1614/WS-06-211R.1
http://dx.doi.org/10.7717/peerj.3531

