44 research outputs found

    A genome-wide association study for diabetic nephropathy genes in African Americans

    Get PDF
    A genome-wide association study was performed using the Affymetrix 6.0 chip to identify genes associated with diabetic nephropathy in African Americans. Association analysis was performed adjusting for admixture in 965 type 2 diabetic African American patients with end-stage renal disease (ESRD) and in 1029 African Americans without type 2 diabetes or kidney disease as controls. The top 724 single nucleotide polymorphisms (SNPs) with evidence of association to diabetic nephropathy were then genotyped in a replication sample of an additional 709 type 2 diabetes-ESRD patients and 690 controls. SNPs with evidence of association in both the original and replication studies were tested in additional African American cohorts consisting of 1246 patients with type 2 diabetes without kidney disease and 1216 with non-diabetic ESRD to differentiate candidate loci for type 2 diabetes-ESRD, type 2 diabetes, and/or all-cause ESRD. Twenty-five SNPs were significantly associated with type 2 diabetes-ESRD in the genome-wide association and initial replication. Although genome-wide significance with type 2 diabetes was not found for any of these 25 SNPs, several genes, including RPS12, LIMK2, and SFI1 are strong candidates for diabetic nephropathy. A combined analysis of all 2890 patients with ESRD showed significant association SNPs in LIMK2 and SFI1 suggesting that they also contribute to all-cause ESRD. Thus, our results suggest that multiple loci underlie susceptibility to kidney disease in African Americans with type 2 diabetes and some may also contribute to all-cause ESRD

    Adult attention deficit hyperactivity disorder symptom profiles and concurrent problems with alcohol and cannabis: Sex differences in a representative, population survey

    Get PDF
    Background: Adult attention deficit hyperactivity disorder (ADHD) shows a robust association with alcohol and cannabis misuse, and these relationships are expressed differently in males and females. Manifestation of specific ADHD symptom profiles, even in the absence of the full disorder, may also be related to problems with alcohol and cannabis, although these relationships have not been investigated in epidemiological studies. To address this question, we studied the sex-specific associations of ADHD symptomatology with problematic alcohol and cannabis use in a representative sample of adults aged 18 years and older residing in Ontario, Canada. Methods: Data were obtained from the Centre for Addiction and Mental Health Monitor, an ongoing cross-sectional telephone survey, between January 2011 and December 2013. Respondents (n = 5080) reported on current ADHD symptomatology, measured using the Adult ADHD Self-Report Version 1.1 Screener (ASRS-V1.1) and four additional items, and alcohol and cannabis use, which were measured using the Alcohol Use Disorders Identification Test (AUDIT) and the Alcohol, Smoking and Substance Involvement Screening Test (ASSIST), respectively. Logistic regression analyses were conducted in men and women to test the association of each ADHD symptom cluster (hyperactivity, inattentiveness, impulsivity) with problematic alcohol and cannabis use. Results: After controlling for age, education, and comorbid internalizing and externalizing psychopathology, hyperactive symptoms were associated with problematic alcohol use in both men and women and with problematic cannabis use in men. Impulsive symptoms were independently associated with problematic cannabis use in men. By contrast, inattentive symptomatology predicted problems with alcohol and cannabis only in women. In all models, age was negatively associated with substance misuse and externalizing behavior was positively correlated and the strongest predictor of hazardous alcohol and cannabis use. Conclusions: ADHD symptom expression in adulthood is related to concurrent hazardous use of alcohol and cannabis. Distinctive ADHD symptom profiles may confer increased risk for substance misuse in a sex-specific manner

    The genetic architecture of type 2 diabetes

    Get PDF
    The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of heritability. To test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole genome sequencing in 2,657 Europeans with and without diabetes, and exome sequencing in a total of 12,940 subjects from five ancestral groups. To increase statistical power, we expanded sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support a major role for lower-frequency variants in predisposition to type 2 diabetes

    A genome-wide association search for type 2 diabetes genes in African Americans.

    Get PDF
    African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations

    Multi-ancestry genome-wide association meta-analysis of Parkinson?s disease

    Get PDF
    Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations

    Evaluation of candidate nephropathy susceptibility genes in a genome-wide association study of African American diabetic kidney disease.

    Get PDF
    Type 2 diabetes (T2D)-associated end-stage kidney disease (ESKD) is a complex disorder resulting from the combined influence of genetic and environmental factors. This study contains a comprehensive genetic analysis of putative nephropathy loci in 965 African American (AA) cases with T2D-ESKD and 1029 AA population-based controls extending prior findings. Analysis was based on 4,341 directly genotyped and imputed single nucleotide polymorphisms (SNPs) in 22 nephropathy candidate genes. After admixture adjustment and correction for multiple comparisons, 37 SNPs across eight loci were significantly associated (1.6E-05<P(emp)<0.049). Among these, variants in MYH9 were the most significant (1.6E-05<P(emp)<0.049), followed by additional chromosome 22 loci (APOL1, SFI1, and LIMK2). Nominal signals were observed in AGTR1, RPS12, CHN2 and CNDP1. Additional adjustment for APOL1 G1/G2 risk variants attenuated association at MYH9 (P(emp) = 0.00026-0.043) while marginally improving significance of other APOL1 SNPs (rs136161, rs713753, and rs767855; P(emp) = 0.0060-0.037); association at other loci was markedly reduced except for CHN2 (chimerin; rs17157914, P(emp)= 0.029). In addition, SNPs in other candidate loci (FRMD3 and TRPC6) trended toward association with T2D-ESKD (P(emp)<0.05). These results suggest that risk contributed by putative nephropathy genes is shared across populations of African and European ancestry
    corecore