69 research outputs found

    Disparity-defined objects moving in depth do not elicit three-dimensional shape constancy

    Get PDF
    Observers generally fail to recover three-dimensional shape accurately from binocular disparity. Typically, depth is overestimated at near distances and underestimated at far distances [Johnston, E. B. (1991). Systematic distortions of shape from stereopsis. Vision Research, 31, 1351-1360]. A simple prediction from this is that disparity-defined objects should appear to expand in depth when moving towards the observer, and compress in depth when moving away. However, additional information is provided when an object moves from which 3D Euclidean shape can be recovered, be this through the addition of structure from motion information [Richards, W. (1985). Structure from stereo and motion. Journal of the Optical Society of America A, 2, 343-349], or the use of non-generic strategies [Todd, J. T., & Norman, J. F. (2003). The visual perception of 3-D shape from multiple cues: Are observers capable of perceiving metric structure? Perception and Psychophysics, 65, 31-47]. Here, we investigated shape constancy for objects moving in depth. We found that to be perceived as constant in shape, objects needed to contract in depth when moving toward the observer, and expand in depth when moving away, countering the effects of incorrect distance scaling (Johnston, 1991). This is a striking example of the failure of shape constancy, but one that is predicted if observers neither accurately estimate object distance in order to recover Euclidean shape, nor are able to base their responses on a simpler processing strategy. © 2005 Elsevier Ltd. All rights reserved

    Discomfort and hypermetabolism

    Get PDF
    In general, the visual stimulation that is uncomfortable on the eye gives rise to a large haemodynamic response in the visual cortex, suggesting that the sensation of discomfort is homeostatic and acts to prevent a large metabolic load. The large haemodynamic response is consistent with evidence from computational models that the visual stimuli responsible for discomfort cannot be processed efficiently. These visual stimuli differ from those encountered in nature in respect of their image structure and colour contrast. Strong sensory stimulation may be metabolically demanding to process, although there are individual differences in response to these stimuli

    Visual discomfort and blur

    Get PDF
    Certain visual stimuli, such as striped patterns and filtered noise, have been reported to be uncomfortable. Some filtered noise patterns judged as uncomfortable are those with a relative decrease in contrast amplitude at high spatial frequencies, compared with the statistics typical of natural images. Decreased amplitude at high spatial frequencies is a characteristic often associated with perceived blur. Additionally, the distribution of contrast across spatial frequencies also provides a cue for the accommodation (focusing) response. The purpose of this study was to investigate the relationship between excess low spatial frequency information, discomfort judgments and perceived blur. Results of these experiments show that a relative reduction in high spatial frequency contrast results in both increased discomfort and perceived blur. This is both in artificial and natural stimuli. A possible explanation for this relationship based on accommodation responses is proposed. © 2013 ARVO

    Visual discomfort and depth-of-field

    Get PDF
    Visual discomfort has been reported for certain visual stimuli and under particular viewing conditions, such as stereoscopic viewing. In stereoscopic viewing, visual discomfort can be caused by a conflict between accommodation and convergence cues that may specify different distances in depth. Earlier research has shown that depth-of-field, which is the distance range in depth in the scene that is perceived to be sharp, influences both the perception of egocentric distance to the focal plane, and the distance range in depth between objects in the scene. Because depth-of-field may also be in conflict with convergence and the accommodative state of the eyes, we raised the question of whether depth-of-field affects discomfort when viewing stereoscopic photographs. The first experiment assessed whether discomfort increases when depth-of-field is in conflict with coherent accommodation-convergence cues to distance in depth. The second experiment assessed whether depth-of-field influences discomfort from a pre-existing accommodation-convergence conflict. Results showed no effect of depth-of-field on visual discomfort. These results suggest therefore that depth-of-field can be used as a cue to depth without inducing discomfort in the viewer, even when cue conflicts are large. © 2013 L O'Hare, T Zhang, H T Nefs, P B Hibbard

    Perceived duration of brief visual events is mediated by timing mechanisms at the global stages of visual processing

    Get PDF
    There is a growing body of evidence pointing to the existence of modality-specific timing mechanisms for encoding sub- second durations. For example, the duration compression effect describes how prior adaptation to a dynamic visual stimulus results in participants underestimating the duration of a sub- second test stimulus when it is presented at the adapted location. There is substantial evidence for the existence of both cortical and pre-cortical visual timing mechanisms; however, little is known about where in the processing hierarchy the cortical mechanisms are likely to be located. We carried out a series of experiments to determine whether or not timing mechanisms are to be found at the global processing level. We had participants adapt to random dot patterns that varied in their motion coherence, thus allowing us to probe the visual system at the level of motion integration. Our first experiment revealed a positive linear relationship between the motion coherence level of the adaptor stimulus and duration compression magnitude. However, increasing the motion coherence level in a stimulus also results in an increase in global speed. To test whether duration compression effects were driven by global speed or global motion, we repeated the experiment, but kept global speed fixed while varying motion coherence levels. The duration compression persisted, but the linear relationship with motion coherence was absent, suggesting that the effect was driven by adapting global speed mechanisms. Our results support previous claims that visual timing mechanisms persist at the level of global processing

    No evidence of reduced contrast sensitivity in migraine-with-aura for large, narrowband, centrally presented noise-masked stimuli

    Get PDF
    Individuals with migraine aura show differences in visual perception compared to control groups. Measures of contrast sensitivity have suggested that people with migraine aura are less able to exclude external visual noise, and that this relates to higher variability in neural processing. The current study compared contrast sensitivity in migraine with aura and control groups for narrow band grating stimuli at 2 and 8 cycles/degree, masked by Gaussian white noise. We predicted that contrast sensitivity would be lower in the migraine with aura group at high noise levels. Contrast sensitivity was higher for the low spatial frequency stimuli, and decreased with the strength of the masking noise. We did not, however, find any evidence of reduced contrast sensitivity associated with migraine with aura. We propose alternative methods as a more targeted assessment of the role of neural noise and excitability as contributing factors to migraine aura

    Excitation-inhibition imbalance in migraine: from neurotransmitters to brain oscillations

    Get PDF
    Migraine is among the most common and debilitating neurological disorders typically affecting people of working age. It is characterised by a unilateral, pulsating headache often associated with severe pain. Despite the intensive research, there is still little understanding of the pathophysiology of migraine. At the electrophysiological level, altered oscillatory parameters have been reported within the alpha and gamma bands. At the molecular level, altered glutamate and GABA concentrations have been reported. However, there has been little cross-talk between these lines of research. Thus, the relationship between oscillatory activity and neurotransmitter concentrations remains to be empirically traced. Importantly, how these indices link back to altered sensory processing has to be clearly established as yet. Accordingly, pharmacologic treatments have been mostly symptom-based, and yet sometimes proving ineffective in resolving pain or related issues. This review provides an integrative theoretical framework of excitation-inhibition imbalance for the understanding of current evidence and to address outstanding questions concerning the pathophysiology of migraine. We propose the use of computational modelling for the rigorous formulation of testable hypotheses on mechanisms of homeostatic imbalance and for the development of mechanism-based pharmacological treatments and neurostimulation interventions

    Magnitude, precision, and realism of depth perception in stereoscopic vision

    Get PDF
    Our perception of depth is substantially enhanced by the fact that we have binocular vision. This provides us with more precise and accurate estimates of depth and an improved qualitative appreciation of the three-dimensional (3D) shapes and positions of objects. We assessed the link between these quantitative and qualitative aspects of 3D vision. Specifically, we wished to determine whether the realism of apparent depth from binocular cues is associated with the magnitude or precision of perceived depth and the degree of binocular fusion. We presented participants with stereograms containing randomly positioned circles and measured how the magnitude, realism, and precision of depth perception varied with the size of the disparities presented. We found that as the size of the disparity increased, the magnitude of perceived depth increased, while the precision with which observers could make depth discrimination judgments decreased. Beyond an initial increase, depth realism decreased with increasing disparity magnitude. This decrease occurred well below the disparity limit required to ensure comfortable viewing

    Interactive Effects of Time, CO\u3csub\u3e2\u3c/sub\u3e, N, and Diversity on Total Belowground Carbon Allocation and Ecosystem Carbon Storage in a Grassland Community

    Get PDF
    Predicting if ecosystems will mitigate or exacerbate rising CO2 requires understanding how elevated CO2 will interact with coincident changes in diversity and nitrogen (N) availability to affect ecosystem carbon (C) storage. Yet achieving such understanding has been hampered by the difficulty of quantifying belowground C pools and fluxes. Thus, we used mass balance calculations to quantify the effects of diversity, CO2, and N on both the total amount of C allocated belowground by plants (total belowground C allocation, TBCA) and ecosystem C storage in a periodically burned, 8-year Minnesota grassland biodiversity, CO2, and N experiment (BioCON). Annual TBCA increased in response to elevated CO2, enriched N, and increasing diversity. TBCA was positively related to standing root biomass. After removing the influence of root biomass, the effect of elevated CO2 remained positive, suggesting additional drivers of TBCA apart from those that maintain high root biomass. Removing root biomass effects resulted in the effects of N and diversity becoming neutral or negative (depending on year), suggesting that the positive effects of diversity and N on TBCA were related to treatmentdriven differences in root biomass. Greater litter production in high diversity, elevated CO2, and enhanced N treatments increased annual ecosystem C loss in fire years and C gain in non-fire years, resulting in overall neutral C storage rates. Our results suggest that frequently burned grasslands are unlikely to exhibit enhanced C sequestration with increasing atmospheric CO2 levels or N deposition

    First- and second-order contributions to depth perception in anti-correlated random dot stereograms.

    Get PDF
    The binocular energy model of neural responses predicts that depth from binocular disparity might be perceived in the reversed direction when the contrast of dots presented to one eye is reversed. While reversed-depth has been found using anti-correlated random-dot stereograms (ACRDS) the findings are inconsistent across studies. The mixed findings may be accounted for by the presence of a gap between the target and surround, or as a result of overlap of dots around the vertical edges of the stimuli. To test this, we assessed whether (1) the gap size (0, 19.2 or 38.4 arc min) (2) the correlation of dots or (3) the border orientation (circular target, or horizontal or vertical edge) affected the perception of depth. Reversed-depth from ACRDS (circular no-gap condition) was seen by a minority of participants, but this effect reduced as the gap size increased. Depth was mostly perceived in the correct direction for ACRDS edge stimuli, with the effect increasing with the gap size. The inconsistency across conditions can be accounted for by the relative reliability of first- and second-order depth detection mechanisms, and the coarse spatial resolution of the latter
    • …
    corecore