106 research outputs found

    Molecular analysis of WWOX expression correlation with proliferation and apoptosis in glioblastoma multiforme

    Get PDF
    Glioblastoma multiforme is the most common type of primary brain tumor in adults. WWOX is a tumor suppressor gene involved in carcinogenesis and cancer progression in many different neoplasms. Reduced WWOX expression is associated with more aggressive phenotype and poor patient outcome in several cancers. We investigated alternations of WWOX expression and its correlation with proliferation, apoptosis and signal trafficking in 67 glioblastoma multiforme specimens. Moreover, we examined the level of WWOX LOH and methylation status in WWOX promoter region. Our results suggest that loss of heterozygosity (relatively frequent in glioblastoma multiforme) along with promoter methylation may decrease the expression of this tumor suppressor gene. Our experiment revealed positive correlations between WWOX and Bcl2 and between WWOX and Ki67. We also confirmed that WWOX is positively correlated with ErbB4 signaling pathway in glioblastoma multiforme

    MicroRNAs in Human Diseases: From Autoimmune Diseases to Skin, Psychiatric and Neurodegenerative Diseases

    Get PDF
    MicroRNAs (miRNAs) are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their target messenger RNAs (mRNAs). Recent studies have clearly demonstrated that miRNAs play critical roles in several biologic processes, including cell cycle, differentiation, cell development, cell growth, and apoptosis and that miRNAs are highly expressed in regulatory T (Treg) cells and a wide range of miRNAs are involved in the regulation of immunity and in the prevention of autoimmunity. It has been increasingly reported that miRNAs are associated with various human diseases like autoimmune disease, skin disease, neurological disease and psychiatric disease. Recently, the identification of mi- RNAs in skin has added a new dimension in the regulatory network and attracted significant interest in this novel layer of gene regulation. Although miRNA research in the field of dermatology is still relatively new, miRNAs have been the subject of much dermatological interest in skin morphogenesis and in regulating angiogenesis. In addition, miRNAs are moving rapidly onto center stage as key regulators of neuronal development and function in addition to important contributions to neurodegenerative disorder. Moreover, there is now compelling evidence that dysregulation of miRNA networks is implicated in the development and onset of human neruodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Tourette's syndrome, Down syndrome, depression and schizophrenia. In this review, I briefly summarize the current studies about the roles of miRNAs in various autoimmune diseases, skin diseases, psychoneurological disorders and mental stress

    The Role of MicroRNAs in Regulatory T Cells and in the Immune Response

    Get PDF
    The discovery of microRNA (miRNA) is one of the major scientific breakthroughs in recent years and has revolutionized current cell biology and medical science. miRNAs are small (19~25nt) noncoding RNA molecules that post-transcriptionally regulate gene expression by targeting the 3' untranslated region (3'UTR) of specific messenger RNAs (mRNAs) for degradation of translation repression. Genetic ablation of the miRNA machinery, as well as loss or degradation of certain individual miRNAs, severely compromises immune development and response, and can lead to immune disorders. Several sophisticated regulatory mechanisms are used to maintain immune homeostasis. Regulatory T (Treg) cells are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases. Recent publications have provided compelling evidence that miRNAs are highly expressed in Treg cells, that the expression of Foxp3 is controlled by miRNAs and that a range of miRNAs are involved in the regulation of immunity. A large number of studies have reported links between alterations of miRNA homeostasis and pathological conditions such as cancer, cardiovascular disease and diabetes, as well as psychiatric and neurological diseases. Although it is still unclear how miRNA controls Treg cell development and function, recent studies certainly indicate that this topic will be the subject of further research. The specific circulating miRNA species may also be useful for the diagnosis, classification, prognosis of diseases and prediction of the therapeutic response. An explosive literature has focussed on the role of miRNA. In this review, I briefly summarize the current studies about the role of miRNAs in Treg cells and in the regulation of the innate and adaptive immune response. I also review the explosive current studies about clinical application of miRNA

    Evaluation of SNPs in miR-196-a2, miR-27a and miR-146a as risk factors of colorectal cancer

    No full text

    Urinary microRNAs as a new class of noninvasive biomarkers in oncology, nephrology, and cardiology.

    No full text
    International audienceMicroRNAs (miRNAs) are small noncoding RNAs that posttranscriptionally regulate gene expression. In the last decade, number of evidences showing miRNAs contribution to the regulation of apoptosis, cellular proliferation, differentiation, and other important cellular processes is constantly growing. Specific miRNA expression signatures have been identified in variety of human cancers as well as pathologies of cardiovascular and urinary systems. Our chapter focuses on the potential of urinary miRNAs to serve as biomarkers in uro-oncology, nephrology, and cardiology. We discuss in detail recent knowledge about the origin of urinary miRNAs, their stability, quality control, and their utility as a potential new class of biomarkers in medicine. Finally, we summarize the studies focusing on detection and characterization of urinary miRNAs as potential biomarkers in urologic cancers, nephrology, and cardiology

    MicroRNA Profiling of Activated and Tolerogenic Human Dendritic Cells

    No full text
    Dendritic cells (DCs) belong to the immune system and are particularly studied for their potential to direct either an activated or tolerogenic immune response. The roles of microRNAs (miRNAs) in posttranscriptional gene expression regulation are being increasingly investigated. This study’s aim is to evaluate the miRNAs’ expression changes in prepared human immature (iDCs), activated (aDCs), and tolerogenic dendritic cells (tDCs). The dendritic cells were prepared using GM-CSF and IL-4 (iDC) and subsequently maturated by adding LPS and IFN-γ (aDC) or IL-10 and TGF-β (tDC). Surface markers, cytokine profiles, and miRNA profiles were evaluated in iDC, tDC, and aDC at 6 h and 24 h of maturation. We identified 4 miRNAs (miR-7, miR-9, miR-155 and miR-182), which were consistently overexpressed in aDC after 6 h and 24 h of maturation and 3 miRNAs (miR-17, miR-133b, and miR-203) and miR-23b cluster solely expressed in tDC. We found 5 miRNAs (miR-10a, miR-203, miR-210, miR-30a, and miR-449b) upregulated and 3 miRNAs downregulated (miR-134, miR-145, and miR-149) in both tDC and aDC. These results indicate that miRNAs are specifically modulated in human DC types. This work may contribute to identifying specific modulating miRNAs for aDC and tDC, which could in the future serve as therapeutic targets in the treatment of cancer and autoimmune diseases
    corecore