1,544 research outputs found

    Sersiclets - A Matched Filter Extension of Shapelets for Weak Lensing Studies

    Full text link
    The precision study of dark matter using weak lensing by large scale structure is strongly constrained by the accuracy with which one can measure galaxy shapes. Several methods have been devised but none have demonstrated the ability to reach the level of precision required by future weak lensing surveys. In this Letter we explore new avenues to the existing Shapelets approach, combining a priori knowledge of the galaxy profile with the power of orthogonal basis function decomposition. This Letter discusses the new issues raised by this matched filter approach and proposes promising alternatives to shape measurement techniques. In particular it appears that the use of a matched filter (e.g. Sersic profile) restricted to elliptical radial fitting functions resolves several well known Shapelet issues.Comment: 6 pages, 6 figures. MNRAS Accepte

    Redshift and Shear Calibration: Impact on Cosmic Shear Studies and Survey Design

    Full text link
    The cosmological interpretation of weak lensing by large-scale structures requires knowledge of the redshift distribution of the source galaxies. Current lensing surveys are often calibrated using external redshift samples which span a significantly smaller sky area in comparison to the lensing survey, and are thus subject to sample variance. Some future lensing surveys are expected to be calibrated in the same way, in particular the fainter galaxy populations where the entire color coverage, and hence photometric redshift estimate, could be challenging to obtain. Using N-body simulations, we study the impact of this sample variance on cosmic shear analysis and show that, to first approximation, it behaves like a shear calibration error 1+/-epsilon. Using the Hubble Deep Field as a redshift calibration survey could therefore be a problem for current lensing surveys. We discuss the impact of the redshift distribution sampling error and a shear calibration error on the design of future lensing surveys, and find that a lensing survey of area Theta square degrees and limiting magnitude m_lim}, has a minimum shear and redshift calibration accuracy requirements given by epsilon = epsilon_0 10^{beta(m_lim-24.5)} / sqrt(Theta/ 200). Above that limit, lensing surveys would not reach their full potential. Using the galaxy number counts from the Hubble Ultra-Deep Field, we find (epsilon_0,beta)=(0.015,-0.18) and (epsilon_0,beta)=(0.011,-0.23) for ground and space based surveys respectively. Lensing surveys with no or limited redshift information and/or poor shear calibration accuracy will loose their potential to analyse the cosmic shear signal in the sub-degree angular scales, and therefore complete photometric redshift coverage should be a top priority for future lensing surveys.Comment: Accepted version to Astroparticle Physic

    Cluster Masses Accounting for Structure along the Line of Sight

    Full text link
    Weak gravitational lensing of background galaxies by foreground clusters offers an excellent opportunity to measure cluster masses directly without using gas as a probe. One source of noise which seems difficult to avoid is large scale structure along the line of sight. Here I show that, by using standard map-making techniques, one can minimize the deleterious effects of this noise. The resulting uncertainties on cluster masses are significantly smaller than when large scale structure is not properly accounted for, although still larger than if it was absent altogether.Comment: 5 pages, 5 figure

    Very weak lensing in the CFHTLS Wide: Cosmology from cosmic shear in the linear regime

    Full text link
    We present an exploration of weak lensing by large-scale structure in the linear regime, using the third-year (T0003) CFHTLS Wide data release. Our results place tight constraints on the scaling of the amplitude of the matter power spectrum sigma_8 with the matter density Omega_m. Spanning 57 square degrees to i'_AB = 24.5 over three independent fields, the unprecedented contiguous area of this survey permits high signal-to-noise measurements of two-point shear statistics from 1 arcmin to 4 degrees. Understanding systematic errors in our analysis is vital in interpreting the results. We therefore demonstrate the percent-level accuracy of our method using STEP simulations, an E/B-mode decomposition of the data, and the star-galaxy cross correlation function. We also present a thorough analysis of the galaxy redshift distribution using redshift data from the CFHTLS T0003 Deep fields that probe the same spatial regions as the Wide fields. We find sigma_8(Omega_m/0.25)^0.64 = 0.785+-0.043 using the aperture-mass statistic for the full range of angular scales for an assumed flat cosmology, in excellent agreement with WMAP3 constraints. The largest physical scale probed by our analysis is 85 Mpc, assuming a mean redshift of lenses of 0.5 and a LCDM cosmology. This allows for the first time to constrain cosmology using only cosmic shear measurements in the linear regime. Using only angular scales theta> 85 arcmin, we find sigma_8(Omega_m/0.25)_lin^0.53 = 0.837+-0.084, which agree with the results from our full analysis. Combining our results with data from WMAP3, we find Omega_m=0.248+-0.019 and sigma_8 = 0.771+-0.029.Comment: 23 pages, 16 figures (A&A accepted

    Cosmic shear analysis of archival HST/ACS data: I. Comparison of early ACS pure parallel data to the HST/GEMS Survey

    Get PDF
    This is the first paper of a series describing our measurement of weak lensing by large-scale structure using archival observations from the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST). In this work we present results from a pilot study testing the capabilities of the ACS for cosmic shear measurements with early parallel observations and presenting a re-analysis of HST/ACS data from the GEMS survey and the GOODS observations of the Chandra Deep Field South (CDFS). We describe our new correction scheme for the time-dependent ACS PSF based on observations of stellar fields. This is currently the only technique which takes the full time variation of the PSF between individual ACS exposures into account. We estimate that our PSF correction scheme reduces the systematic contribution to the shear correlation functions due to PSF distortions to < 2*10^{-6} for galaxy fields containing at least 10 stars. We perform a number of diagnostic tests indicating that the remaining level of systematics is consistent with zero for the GEMS and GOODS data confirming the success of our PSF correction scheme. For the parallel data we detect a low level of remaining systematics which we interpret to be caused by a lack of sufficient dithering of the data. Combining the shear estimate of the GEMS and GOODS observations using 96 galaxies arcmin^{-2} with the photometric redshift catalogue of the GOODS-MUSIC sample, we determine a local single field estimate for the mass power spectrum normalisation sigma_{8,CDFS}=0.52^{+0.11}_{-0.15} (stat) +/- 0.07 (sys) (68% confidence assuming Gaussian cosmic variance) at fixed Omega_m=0.3 for a LambdaCDM cosmology. We interpret this exceptionally low estimate to be due to a local under-density of the foreground structures in the CDFS.Comment: Version accepted for publication in Astronomy & Astrophysics with 28 pages, 25 figures. A version with full resolution figures can be downloaded from http://www.astro.uni-bonn.de/~schrabba/papers/cosmic_shear_acs1_v2.pd

    The vacuum energy with non-ideal boundary conditions via an approximate functional equation

    Full text link
    We discuss the vacuum energy of a quantized scalar field in the presence of classical surfaces, defining bounded domains ΩRd\Omega \subset {\mathbb{R}}^{d}, where the field satisfies ideal or non-ideal boundary conditions. For the electromagnetic case, this situation describes the conductivity correction to the zero-point energy. Using an analytic regularization procedure, we obtain the vacuum energy for a massless scalar field at zero temperature in the presence of a slab geometry Ω=Rd1×[0,L]\Omega=\mathbb R^{d-1}\times[0, L] with Dirichlet boundary conditions. To discuss the case of non-ideal boundary conditions, we employ an asymptotic expansion, based on an approximate functional equation for the Riemann zeta-function, where finite sums outside their original domain of convergence are defined. Finally, to obtain the Casimir energy for a massless scalar field in the presence of a rectangular box, with lengths L1L_{1} and L2L_{2}, i.e., Ω=[0,L1]×[0,L2]\Omega=[0,L_{1}]\times[0,L_{2}] with non-ideal boundary conditions, we employ an approximate functional equation of the Epstein zeta-function.Comment: 10 page

    Photometric Redshift Calibration with Self Organising Maps

    Get PDF
    Accurate photometric redshift calibration is central to the robustness of all cosmology constraints from cosmic shear surveys. Analyses of the KiDS re-weighted training samples from all overlapping spectroscopic surveys to provide a direct redshift calibration. Using self-organising maps (SOMs) we demonstrate that this spectroscopic compilation is sufficiently complete for KiDS, representing 99%99\% of the effective 2D cosmic shear sample. We use the SOM to define a 100%100\% represented `gold' cosmic shear sample, per tomographic bin. Using mock simulations of KiDS and the spectroscopic training set, we estimate the uncertainty on the SOM redshift calibration, and find that photometric noise, sample variance, and spectroscopic selection effects (including redshift and magnitude incompleteness) induce a combined maximal scatter on the bias of the redshift distribution reconstruction (Δz=zestztrue\Delta \langle z \rangle=\langle z \rangle_{\rm est}-\langle z \rangle_{\rm true}) of σΔz0.006\sigma_{\Delta \langle z \rangle} \leq 0.006 in all tomographic bins. We show that the SOM calibration is unbiased in the cases of noiseless photometry and perfectly representative spectroscopic datasets, as expected from theory. The inclusion of both photometric noise and spectroscopic selection effects in our mock data introduces a maximal bias of Δz=0.013±0.006\Delta \langle z \rangle =0.013\pm0.006, or Δz0.025\Delta \langle z \rangle \leq 0.025 at 97.5%97.5\% confidence, once quality flags have been applied to the SOM. The method presented here represents a significant improvement over the previously adopted direct redshift calibration implementation for KiDS, owing to its diagnostic and quality assurance capabilities. The implementation of this method in future cosmic shear studies will allow better diagnosis, examination, and mitigation of systematic biases in photometric redshift calibration.Comment: 22 pages, 10 figures, 4 appendices, accepted for publication in A&

    A bias in cosmic shear from galaxy selection: results from ray-tracing simulations

    Full text link
    We identify and study a previously unknown systematic effect on cosmic shear measurements, caused by the selection of galaxies used for shape measurement, in particular the rejection of close (blended) galaxy pairs. We use ray-tracing simulations based on the Millennium Simulation and a semi-analytical model of galaxy formation to create realistic galaxy catalogues. From these, we quantify the bias in the shear correlation functions by comparing measurements made from galaxy catalogues with and without removal of close pairs. A likelihood analysis is used to quantify the resulting shift in estimates of cosmological parameters. The filtering of objects with close neighbours (a) changes the redshift distribution of the galaxies used for correlation function measurements, and (b) correlates the number density of sources in the background with the density field in the foreground. This leads to a scale-dependent bias of the correlation function of several percent, translating into biases of cosmological parameters of similar amplitude. This makes this new systematic effect potentially harmful for upcoming and planned cosmic shear surveys. As a remedy, we propose and test a weighting scheme that can significantly reduce the bias.Comment: 9 pages, 9 figures, version accepted for publication in Astronomy & Astrophysic
    corecore