80 research outputs found

    First Characterization of the Ultra-Shielded Chamber in the Low-noise Underground Laboratory (LSBB) of Rustrel Pays d'Apt

    Get PDF
    In compliance with international agreements on nuclear weapons limitation, the French ground-based nuclear arsenal has been decommissioned in its totality. One of its former underground missile control centers, located in Rustrel, 60 km east of Avignon (Provence) has been converted into the ``Laboratoire Souterrain \`a Bas Bruit de Rustrel-Pays d'Apt'' (LSBB). The deepest experimental hall (500 m of calcite rock overburden) includes a 100 m2^{2} area of sturdy flooring suspended by and resting on shock absorbers, entirely enclosed in a 28 m-long, 8 m-diameter, 1 cm-thick steel Faraday cage. This results in an unparalleled combination of shielding against cosmic rays, acoustic, seismic and electromagnetic noise, which can be exploited for rare event searches using ultra low-temperature and superconducting detectors. The first characterization measurements in this unique civilian site are reported. For more info see http://home.cern.ch/collar/RUSTREL/rustrel.htmlComment: Homepage and quoted hyperlinks have been updated: see http://home.cern.ch/collar/RUSTREL/rustrel.htm

    Perception-based noise assessment of a future blended wing body aircraft concept using synthesized flyovers in an acoustic VR environment—The ARTEM study

    Get PDF
    New aircraft concepts are currently being developed with the goal of less emissions of CO2 and noise. Remarkable noise reductions in long-range aircraft can only be expected from disruptive vehicle designs, new propulsion systems and specific low-noise technologies. In this paper, one such future vehicle design, a blended wing body (BWB) long-range aircraft, is described and studied with respect to sound levels on the ground, sound characteristics and noise annoyance. Virtual flyovers of different vehicle variants were synthesized and auralized in an acoustic VR environment, and investigated through psychoacoustic laboratory experiments. The applied methodology was successfully hierarchically validated by comparison with measurements of existing jet aircraft, assessing acoustical indices, time-frequency features, perceived plausibility, and induced noise annoyance. The perception-based evaluation of the BWB revealed that, while the BWB aircraft may initially be perceived as somewhat more unfamiliar, they are substantially less annoying than current tube-and-wing long-range aircraft of similar range and mission for take-offs as well as for landings. For the best BWB variant, noise annoyance was reduced by 4.3 units for departures and by 3.5 units for approaches on the 11-point scale. The main reason for these findings seems to be the acoustic shielding by the body of the extended fuselage, which was found to be an important factor in reducing sound levels in the order of 10–20 dB, and accordingly also to strongly reduce loudness. Additional low noise technologies and geared turbofan engines with a high bypass ratio further contributed to the reduction of noise annoyance of the BWB. A large part of the BWBs benefit could be explained by its lower sound levels, but additional benefits were found. The observed reduction in noise annoyance was found to be larger than what can be explained with conventional noise metrics. This benefit is probably due to more favorable sound characteristics compared to today's reference aircraft, such as less variation in time and less audible tones. The current study thus suggests that the studied BWB vehicle concept may substantially reduce noise annoyance on humans

    The detection of phase amplitude coupling during sensory processing

    Get PDF
    There is increasing interest in understanding how the phase and amplitude of distinct neural oscillations might interact to support dynamic communication within the brain. In particular, previous work has demonstrated a coupling between the phase of low frequency oscillations and the amplitude (or power) of high frequency oscillations during certain tasks, termed phase amplitude coupling (PAC). For instance, during visual processing in humans, PAC has been reliably observed between ongoing alpha (8-13 Hz) and gamma-band (>40 Hz) activity. However, the application of PAC metrics to electrophysiological data can be challenging due to numerous methodological issues and lack of coherent approaches within the field. Therefore, in this article we outline the various analysis steps involved in detecting PAC, using an openly available MEG dataset from 16 participants performing an interactive visual task. Firstly, we localized gamma and alpha-band power using the Fieldtrip toolbox, and extracted time courses from area V1, defined using a multimodal parcelation scheme. These V1 responses were analyzed for changes in alpha-gamma PAC, using four common algorithms. Results showed an increase in alpha (7-13 Hz)-gamma (40-100 Hz) PAC in response to the visual grating stimulus, though specific patterns of coupling were somewhat dependent upon the algorithm employed. Additionally, post-hoc analyses showed that these results were not driven by the presence of non-sinusoidal oscillations, and that trial length was sufficient to obtain reliable PAC estimates. Finally, throughout the article, methodological issues and practical guidelines for ongoing PAC research will be discussed

    The ACER pollen and charcoal database: A global resource to document vegetation and fire response to abrupt climate changes during the last glacial period

    Get PDF
    This is the final version of the article. Available from Copernicus Publications via the DOI in this record.Quaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard-Oeschger (D-O) cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D-O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses) global database, which includes 93 pollen records from the last glacial period (73-15ka) with a temporal resolution better than 1000years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (14C, 234U/230Th, optically stimulated luminescence (OSL), 40Ar/39Ar-dated tephra layers) has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft Access™ at https://doi.org/10.1594/PANGAEA.870867.The members of the ACER project wish to thank the QUEST-DESIRE (UK and France) bilateral project, the INQUA International Focus Group ACER and the INTIMATE-COST action for funding a suite of workshops to compile the ACER pollen and charcoal database and the workshop on ACER chronology that allow setting the basis for harmonizing the chronologies. Josué M. Polanco-Martinez was funded by a Basque Government postdoctoral fellowship (POS_2015_1_0006) and Sandy P. Harrison by the ERC Advanced Grant GC2.0: unlocking the past for a clearer future

    Rapid aversive and memory trace learning during route navigation in desert ants

    Get PDF
    The ability of bees and ants to learn long visually guided routes in complex environments is perhaps one of the most spectacular pieces of evidence for the impressive power of their small brains. While flying bees can visit flowers in an optimised sequence over kilometres, walking solitary foraging ants can precisely recapitulate routes of up to a hundred metres in complex environments [1]. It is clear that route following depends largely on learnt visual information and we have a good idea how visual memories can guide individuals along them [2–6], as well as how this is implemented in the insect brain [7,8]. However, little is known about the mechanisms that control route learning and development. Here we show that ants (Melophorus bagoti and Cataglyphis fortis) navigating in their natural environments can actively learn a route detour to avoid a pit-trap. This adaptive flexibility depends on a mechanism of aversive learning based on memory traces of recently encountered stimuli, reflecting the laboratory paradigm of trace conditioning. The views experienced before falling into the trap become associated with the ensuing negative outcome and thus trigger salutary turns on the subsequent trip. This drives the ants to orient away from the goal direction and avoid the trap. If the pit-trap is avoided, the novel views experienced during the detour become positively reinforced and the new route crystallises. We discuss how such an interplay between appetitive and aversive memories might be implemented in insect neural circuitry

    Unraveling the forcings controlling the vegetation and climate of the best orbital analogues for the present interglacial in SW Europe

    Get PDF
    The suitability of MIS 11c and MIS 19c as analogues of our present interglacial and its natural evolution is still debated. Here we examine the regional expression of the Holocene and its orbital analogues over SW Iberia using a model-data comparison approach. Regional tree fraction and climate based on snapshot and transient experiments using the LOVECLIM model are evaluated against the terrestrial-marine profiles from Site U1385 documenting the regional vegetation and climatic changes. The pollen-based reconstructions show a larger forest optimum during the Holocene compared to MIS 11c and MIS 19c, putting into question their analogy in SW Europe. Pollen-based and model results indicate reduced MIS 11c forest cover compared to the Holocene primarily driven by lower winter precipitation, which is critical for Mediterranean forest development. Decreased precipitation was possibly induced by the amplified MIS 11c latitudinal insolation and temperature gradient that shifted the westerlies northwards. In contrast, the reconstructed lower forest optimum at MIS 19c is not reproduced by the simulations probably due to the lack of Eurasian ice sheets and its related feedbacks in the model. Transient experiments with time-varying insolation and CO2 reveal that the SW Iberian forest dynamics over the interglacials are mostly coupled to changes in winter precipitation mainly controlled by precession, CO2 playing a negligible role. Model simulations reproduce the observed persistent vegetation changes at millennial time scales in SW Iberia and the strong forest reductions marking the end of the interglacial "optimum".SFRH/BD/9079/2012, SFRH/BPD/108712/2015, SFRH/BPD/108600/2015info:eu-repo/semantics/publishedVersio
    • …
    corecore