157 research outputs found

    Increasing System Test Coverage in Production Automation Systems

    Full text link
    An approach is introduced, which supports a testing technician in the identification of possibly untested behavior of control software of fully integrated automated production systems (aPS). Based on an approach for guided semi-automatic system testing, execution traces are recorded during testing, allowing a subsequent coverage assessment. As the behavior of an aPS is highly dependent on the software, omitted system behavior can be identified and assessed for criticality. Through close cooperation with industry, this approach represents the first coverage assessment approach for system testing in production automation to be applied on real industrial objects and evaluated by industrial experts

    Industrially Applicable System Regression Test Prioritization in Production Automation

    Full text link
    When changes are performed on an automated production system (aPS), new faults can be accidentally introduced in the system, which are called regressions. A common method for finding these faults is regression testing. In most cases, this regression testing process is performed under high time pressure and on-site in a very uncomfortable environment. Until now, there is no automated support for finding and prioritizing system test cases regarding the fully integrated aPS that are suitable for finding regressions. Thus, the testing technician has to rely on personal intuition and experience, possibly choosing an inappropriate order of test cases, finding regressions at a very late stage of the test run. Using a suitable prioritization, this iterative process of finding and fixing regressions can be streamlined and a lot of time can be saved by executing test cases likely to identify new regressions earlier. Thus, an approach is presented in this paper that uses previously acquired runtime data from past test executions and performs a change identification and impact analysis to prioritize test cases that have a high probability to unveil regressions caused by side effects of a system change. The approach was developed in cooperation with reputable industrial partners active in the field of aPS engineering, ensuring a development in line with industrial requirements. An industrial case study and an expert evaluation were performed, showing promising results.Comment: 13 pages, https://ieeexplore.ieee.org/abstract/document/8320514

    Tunneling Time in Ultrafast Science is Real and Probabilistic

    Full text link
    We compare the main competing theories of tunneling time against experimental measurements using the attoclock in strong laser field ionization of helium atoms. Refined attoclock measurements reveal a real and not instantaneous tunneling delay time over a large intensity regime, using two different experimental apparatus. Only two of the theoretical predictions are compatible within our experimental error: the Larmor time, and the probability distribution of tunneling times constructed using a Feynman Path Integral (FPI) formulation. The latter better matches the observed qualitative change in tunneling time over a wide intensity range, and predicts a broad tunneling time distribution with a long tail. The implication of such a probability distribution of tunneling times, as opposed to a distinct tunneling time, challenges how valence electron dynamics are currently reconstructed in attosecond science. It means that one must account for a significant uncertainty as to when the hole dynamics begin to evolve.Comment: 11 pages, 4 figure

    Modularity and Architecture of PLC-based Software for Automated Production Systems: An analysis in industrial companies

    Full text link
    Adaptive and flexible production systems require modular and reusable software especially considering their long term life cycle of up to 50 years. SWMAT4aPS, an approach to measure Software Maturity for automated Production Systems is introduced. The approach identifies weaknesses and strengths of various companie's solutions for modularity of software in the design of automated Production Systems (aPS). At first, a self assessed questionnaire is used to evaluate a large number of companies concerning their software maturity. Secondly, we analyze PLC code, architectural levels, workflows and abilities to configure code automatically out of engineering information in four selected companies. In this paper, the questionnaire results from 16 German world leading companies in machine and plant manufacturing and four case studies validating the results from the detailed analyses are introduced to prove the applicability of the approach and give a survey of the state of the art in industry

    Sub-stellar companions of intermediate-mass stars with CoRoT: CoRoT–34b, CoRoT–35b, and CoRoT–36b

    Get PDF
    Theories of planet formation give contradicting results of how frequent close-in giant planets of intermediate mass stars (IMSs; 1.3≤M⋆≤3.2M⊙⁠) are. Some theories predict a high rate of IMSs with close-in gas giants, while others predict a very low rate. Thus, determining the frequency of close-in giant planets of IMSs is an important test for theories of planet formation. We use the CoRoT survey to determine the absolute frequency of IMSs that harbour at least one close-in giant planet and compare it to that of solar-like stars. The CoRoT transit survey is ideal for this purpose, because of its completeness for gas-giant planets with orbital periods of less than 10 d and its large sample of main-sequence IMSs. We present a high precision radial velocity follow-up programme and conclude on 17 promising transit candidates of IMSs, observed with CoRoT. We report the detection of CoRoT–34b, a brown dwarf close to the hydrogen burning limit, orbiting a 1.1 Gyr A-type main-sequence star. We also confirm two inflated giant planets, CoRoT–35b, part of a possible planetary system around a metal-poor star, and CoRoT–36b on a misaligned orbit. We find that 0.12±0.10 per cent of IMSs between 1.3≤M⋆≤1.6M⊙ observed by CoRoT do harbour at least one close-in giant planet. This is significantly lower than the frequency (⁠0.70±0.16 per cent⁠) for solar-mass stars, as well as the frequency of IMSs harbouring long-period planets (⁠∼8 per cent⁠)

    Angular dependence of photoemission time delay in helium

    Full text link
    Time delays of electrons emitted from an isotropic initial state with the absorption of a single photon and leaving behind an isotropic ion are angle independent. Using an interferometric method involving XUV attosecond pulse trains and an IR-probe field in combination with a detection scheme, which allows for full three-dimensional momentum resolution, we show that measured time delays between electrons liberated from the 1s2 spherically symmetric ground state of helium depend on the emission direction of the electrons relative to the common linear polarization axis of the ionizing XUV light and the IR-probing field. Such time delay anisotropy, for which we measure values as large as 60 as, is caused by the interplay between final quantum states with different symmetry and arises naturally whenever the photoionization process involves the exchange of more than one photon. With the support of accurate theoretical models, the angular dependence of the time delay is attributed to small phase differences that are induced in the laser-driven continuum transitions to the final states. Since most measurement techniques tracing attosecond electron dynamics involve the exchange of at least two photons, this is a general and significant effect that must be taken into account in all measurements of time delays involving photoionization processesS.H, C.C, L.G., and U.K. acknowledge support by the ERC advanced Grant No. ERC-2012-ADG_20120216 within the seventh framework program of the European Union and by the NCCR MUST, funded by the Swiss National Science Foundation. M.L. acknowledges support from the ETH Zurich Postdoctoral Fellowship Program. A.J.G., L.A., and F.M. acknowledge the support from the European Research Council under the ERC Grant No. 290853 XCHEM, from the European COST Action No. CM1204 XLIC, the MINECO Project No. FIS2013-42002-R, the ERA-Chemistry Project No. PIM2010EEC- 00751, and the European Grant No. MC-ITN CORINF. Calculations were performed at the Centro de Computacion Científica of the Universidad Autónoma de Madrid (CC-UAM) and the Barcelona Supercomputing Center (BSC). I.I. and A.S.K. acknowledge support of the Australian Research Council (Grant No. DP120101805) and the use of the National Computational Infrastructure Facility. J.M.D. acknowledges support from the Swedish Research Grants No. 2013-344 and No. 2014-3724. E.L. acknowledges support from the Swedish Research Council, Grant No. 2012-3668. Moreover, this research was supported in part by the Kavli Institute for Theoretical Physics (National Science Foundation under Grant No. NSF PHY11-25915) and by NORDITA, the Nordic Institute for Theoretical Physic

    Impact of axial active magnetic bearing stiffness coefficient on resonance frequencies of reaction wheel rotor

    Get PDF
    Разработана математическая модель системы «ротор - электромагнитные подшипники» для электродвигателя-маховика системы ориентации и стабилизации космического аппарата. Модель учитывает собственные частоты изгибных колебаний ротора и коэффициенты жесткости электромагнитных подшипников. Предложен способ повышения угловой жесткости системы путем применения многополюсного осевого электромагнитного подшипника и рассмотрено влияние его коэффициента жесткости на собственные частоты системы.The paper presents the mathematical model of «rotor - active magnetic bearings» system for reaction wheel used in spacecraft attitude control system. Developed model consider the natural frequencies of rotor bending oscillations and stiffness parameters of electromagnetic bearing. Method of angular stiffness increasing by using multipolar axial magnetic bearing is suggested and the results of impact analysis of multipolar axial magnetic bearing stiffness on resonance frequencies of system is considered

    III.7 Planets orbiting stars more massive than the Sun

    Get PDF
    This book is dedicated to all the people interested in the CoRoT mission and the beautiful data that were delivered during its six year duration. Either amateurs, professional, young or senior researchers, they will find treasures not only at the time of this publication but also in the future twenty or thirty years. It presents the data in their final version, explains how they have been obtained, how to handle them, describes the tools necessary to understand them, and where to find them. It also highlights the most striking first results obtained up to now. CoRoT has opened several unexpected directions of research and certainly new ones still to be discovered

    Regulation of body weight and energy homeostasis by neuronal cell adhesion molecule 1

    Get PDF
    Susceptibility to obesity is linked to genes regulating neurotransmission, pancreatic beta-cell function and energy homeostasis. Genome-wide association studies have identified associations between body mass index and two loci near cell adhesion molecule 1 (CADM1) and cell adhesion molecule 2 (CADM2), which encode membrane proteins that mediate synaptic assembly. We found that these respective risk variants associate with increased CADM1 and CADM2 expression in the hypothalamus of human subjects. Expression of both genes was elevated in obese mice, and induction of Cadm1 in excitatory neurons facilitated weight gain while exacerbating energy expenditure. Loss of Cadm1 protected mice from obesity, and tract-tracing analysis revealed Cadm1-positive innervation of POMC neurons via afferent projections originating from beyond the arcuate nucleus. Reducing Cadm1 expression in the hypothalamus and hippocampus promoted a negative energy balance and weight loss. These data identify essential roles for Cadm1-mediated neuronal input in weight regulation and provide insight into the central pathways contributing to human obesity.</p
    corecore