754 research outputs found

    Incompatibility Systems in Switchgrass

    Get PDF
    Switchgrass (Panicum virgatum L.), a cross-pollinated perennial, produces very little or no seed when self-pollinated, indicating the presence of self-incompatibility mechanisms. Knowledge of self-incompatibility mechanisms is required to use germplasm effectively in a breeding program. The objective of this study was to characterize features of the incompatibility systems in switchgrass. Seed set and seed characteristics of reciprocal matings of tetraploid, octaploid, and tetraploid x octaploid plants were used as measures of incompatibility. Both bagged mutual pollination and manual emasculation and pollination methods were used to make crosses. The percentages of self-compatibility in the tetraploid and octaploid parent plants were 0.35 and 1.39%, respectively. Prefertilization incompatibility in switchgrass is apparently under gametophytic control, since there were significant differences in percentage of compatible pollen as measured by percentage of total seed set between reciprocal matings within ploidy levels. Results indicated that the prefertilization incompatibility system in switchgrass is similar to the S-Z incompatibility system found in other members of the Poaceae. A postfertilization incompatibility system also exists that inhibits intermatings among octaploid and tetraploid plants. In these interploidy crosses, two very distinctive types of abnormal seed were found. When the female parent was the tetraploid plant, the resulting seed was small and shriveled, while when the female parent was the octaploid, small seed with floury endosperm was obtained. These results are similar to those obtained for endosperm incompatibility due to the endosperm balance number system found in other species

    Phylogenetic and ecological correlates of pollen morphological diversity in a Neotropical rainforest

    Get PDF
    Morphology varies enormously across clades, and the morphology of a trait may reflect ecological function or the retention of ancestral features. We examine the tension between ecological and phylogenetic correlates of morphological diversity through a case study of pollen grains produced by angiosperms in Barro Colorado Island, Panama (BCI). Using a molecular phylogeny of 730 taxa, we demonstrate a statistically significant association between morphological and genetic distance for these plants. However, the relationship is non‐linear, and while close relatives share more morphological features than distant relatives, above a genetic distance of ~ 0.7 increasingly distant relatives are not more divergent in phenotype. The pollen grains of biotically pollinated and abiotically pollinated plants overlap in morphological space, but certain pollen morphotypes and individual morphological traits are unique to these pollination ecologies. Our data show that the pollen grains of biotically pollinated plants are significantly more morphologically diverse than those of abiotically pollinated plants

    Functional characterization of a class III acid endochitinase from the traps of the carnivorous pitcher plant genus, Nepenthes

    Get PDF
    Carnivory in plants is an adaptation strategy to nutrient-poor environments and soils. Carnivorous plants obtain some additional mineral nutrients by trapping and digesting prey; the genus Nepenthes is helped by its specialized pitcher traps. To make the nutrients available, the caught prey needs to be digested, a process that requires the concerted activity of several hydrolytic enzymes. To identify and investigate the various enzymes involved in this process, fluid from Nepenthes traps has been analysed in detail. In this study, a novel type of Nepenthes endochitinase was identified in the digestion fluid of closed pitchers. The encoding endochitinase genes have been cloned from eight different Nepenthes species. Among these, the deduced amino acid sequence similarity was at least 94.9%. The corresponding cDNA from N. rafflesiana was heterologously expressed, and the purified protein, NrChit1, was biochemically characterized. The enzyme, classified as a class III acid endochitinase belonging to family 18 of the glycoside hydrolases, is secreted into the pitcher fluid very probably due to the presence of an N-terminal signal peptide. Transcriptome analyses using real-time PCR indicated that the presence of prey in the pitcher up-regulates the endochitinase gene not only in the glands, which are responsible for enzyme secretion, but at an even higher level, in the glands’ surrounding tissue. These results suggest that in the pitchers’ tissues, the endochitinase as well as other proteins from the pitcher fluid might fulfil a different, primary function as pathogenesis-related proteins

    An Osmotic Model of the Growing Pollen Tube

    Get PDF
    Pollen tube growth is central to the sexual reproduction of plants and is a longstanding model for cellular tip growth. For rapid tip growth, cell wall deposition and hardening must balance the rate of osmotic water uptake, and this involves the control of turgor pressure. Pressure contributes directly to both the driving force for water entry and tip expansion causing thinning of wall material. Understanding tip growth requires an analysis of the coordination of these processes and their regulation. Here we develop a quantitative physiological model which includes water entry by osmosis, the incorporation of cell wall material and the spreading of that material as a film at the tip. Parameters of the model have been determined from the literature and from measurements, by light, confocal and electron microscopy, together with results from experiments made on dye entry and plasmolysis in Lilium longiflorum. The model yields values of variables such as osmotic and turgor pressure, growth rates and wall thickness. The model and its predictive capacity were tested by comparing programmed simulations with experimental observations following perturbations of the growth medium. The model explains the role of turgor pressure and its observed constancy during oscillations; the stability of wall thickness under different conditions, without which the cell would burst; and some surprising properties such as the need for restricting osmotic permeability to a constant area near the tip, which was experimentally confirmed. To achieve both constancy of pressure and wall thickness under the range of conditions observed in steady-state growth the model reveals the need for a sensor that detects the driving potential for water entry and controls the deposition rate of wall material at the tip

    The PEARL score predicts 90-day readmission or death after hospitalisation for acute exacerbation of COPD.

    Get PDF
    BACKGROUND: One in three patients hospitalised due to acute exacerbation of COPD (AECOPD) is readmitted within 90 days. No tool has been developed specifically in this population to predict readmission or death. Clinicians are unable to identify patients at particular risk, yet resources to prevent readmission are allocated based on clinical judgement. METHODS: In participating hospitals, consecutive admissions of patients with AECOPD were identified by screening wards and reviewing coding records. A tool to predict 90-day readmission or death without readmission was developed in two hospitals (the derivation cohort) and validated in: (a) the same hospitals at a later timeframe (internal validation cohort) and (b) four further UK hospitals (external validation cohort). Performance was compared with ADO, BODEX, CODEX, DOSE and LACE scores. RESULTS: Of 2417 patients, 936 were readmitted or died within 90 days of discharge. The five independent variables in the final model were: Previous admissions, eMRCD score, Age, Right-sided heart failure and Left-sided heart failure (PEARL). The PEARL score was consistently discriminative and accurate with a c-statistic of 0.73, 0.68 and 0.70 in the derivation, internal validation and external validation cohorts. Higher PEARL scores were associated with a shorter time to readmission. CONCLUSIONS: The PEARL score is a simple tool that can effectively stratify patients' risk of 90-day readmission or death, which could help guide readmission avoidance strategies within the clinical and research setting. It is superior to other scores that have been used in this population. TRIAL REGISTRATION NUMBER: UKCRN ID 14214

    Comparative morphology of the forewing base articulationin Sternorrhyncha compared with a representative of Fulgoromorpha (Insecta, Hemiptera)

    Get PDF
    The forewing articulation of single species from each of the four subgroups of Sternorrhyncha (Aleyrodomorpha, Aphidomorpha, Coccomorpha, Psyllomorpha) was examined by optical and scanning electron microscopy. The species were compared with a species of Cixiidae (Fulgoromorpha), as an outgroup of Sternorrhyncha. We present the results of a comparative analysis of the forewing articulation in these five groups, propose a standardized terminology and compare our findings with those previously reported. The wing base of all examined species is composed of the following structures: anterior and posterior notal wing process, first, second, and third axillary sclerites, tegula, and axillary cord. The number of elements included in the wing base and the surrounding area is the greatest in Cacopsylla mali, the most complicated species from Sternorrhyncha. Based on the shape of axillary sclerites and the number of elements forming the wing base environment, Orthezia urticae (Coccomorpha) and Cixius nervosus (Fulgoromorpha) are the most similar. Among Sternorrhyncha, the most similar axillaries are those of Aphis fabae and Orthezia urticae, which is congruent with existing classifications. In this paper we show that the four groups from Sternorrhyncha exhibit their own distinct wing base morphology
    corecore