127 research outputs found

    Cost-effectiveness of two dry needling interventions for plantar heel pain: A secondary analysis of an rct

    Get PDF
    Plantar heel pain is a common cause of foot pain that affects patients’ quality of life and represents a significant cost for the healthcare system. Dry needling and percutaneous needle electrolysis are two minimally invasive treatments that were shown to be effective for the management of plantar heel pain. The aim of our study was to compare these two treatments in terms of health and economic consequences based on the results of a published randomized controlled trial. For this, we evaluated the costs from the point of view of the hospital and we carried out a cost-effectiveness study using quality of life as the main variable according to the Eq-5D-5L questionnaire. The cost of the complete treatment with dry needling (DN) was €178.86, while the percutaneous needle electrolysis (PNE) was €200.90. The quality of life of patients improved and was translated into +0.615 quality-adjusted life years (QALYs) for DN and +0.669 for PNE. PNE presented an average incremental cost-effectiveness ratio (ICER) of €411.34/QALY against DN. These results indicate that PNE had a better cost-effectiveness ratio for the treatment of plantar heel pain than DN

    Comparing two dry needling interventions for plantar heel pain: a randomised controlled trial

    Get PDF
    OBJECTIVES: To compare the effectiveness of dry needling (DN) versus percutaneous needle electrolysis (PNE) for improving the level of pain, function and quality of life (QoL) of patients suffering from plantar heel pain (PHP) provoked by myofascial trigger points. DESIGN: A prospective, parallel-group, randomised controlled trial with blinded outcome assessment. SETTING: A single treatment facility in the State of Kuwait. PARTICIPANTS: 118 participants were screened for eligibility. Of these, 102 participants were enrolled (30 men (49.5±8.9 years) and 72 women (48.1±8.8 years)) and 68 of them completed the trial. INTERVENTIONS: Two parallel groups, one study arm received DN and a stretching protocol whereas the other arm received percutaneous needling electrolysis with a stretching protocol. PRIMARY AND SECONDARY OUTCOME MEASURES: The primary outcome measure was the Foot Pain domain of the Foot Health Status Questionnaire, with 13 questions related to foot health-related domains. Secondary outcome measures included the 0-10 numerical rating scale pain visual analogue scale (VAS) scores, performed before and after each treatment session. In addition, QoL was measured using the EuroQoL-5 dimensions. All measurements were taken at baseline, at 4, 8, 12, 26 and 52 weeks. RESULTS: Foot Pain domain improved at all time points for DN group (p<0.001; 29.7 (17.8 to 41.5)) and percutaneous needling electrolysis group (p<0.001; 32.7 (18.3 to 47.0)), without significant differences between groups. Pain VAS scores decreased at all time points for both DN (p<0.001; -2.6 (-4.0 to -1.2)) and percutaneous needling electrolysis group (p<0.001; -3.0 (-4.5 to -1.6)). QoL improved at 4 weeks for both DN (p<0.01; 0.15 (0.5 to 0.25)) and percutaneous needling electrolysis group (p<0.01; 0.09 (0.01 to 0.17)) and at 8 and 52 weeks for the PNE group (p<0.01; 0.10 (0.02 to 0.18)), with significant differences between groups for the QoL at 52 weeks (p<0.05; 0.10 (0.01 to 0.18)). There were two small haematomas in the PNE group and one in the DN group. No serious adverse events were reported. CONCLUSIONS: Both PNE and DN were effective for PHP management, reducing mean and maximum pain since the first treatment session, with long lasting effects (52 weeks) and significant differences between groups in the case of QoL at 52 weeks in favour of the PNE group

    Discovery of Very High Energy gamma-rays from 1ES 1011+496 at z=0.212

    Get PDF
    We report on the discovery of Very High Energy (VHE) gamma-ray emission from the BL Lacertae object 1ES1011+496. The observation was triggered by an optical outburst in March 2007 and the source was observed with the MAGIC telescope from March to May 2007. Observing for 18.7 hr we find an excess of 6.2 sigma with an integrated flux above 200 GeV of (1.58±0.32)1011\pm0.32) 10^{-11} photons cm2^{-2} s1^{-1}. The VHE gamma-ray flux is >40% higher than in March-April 2006 (reported elsewhere), indicating that the VHE emission state may be related to the optical emission state. We have also determined the redshift of 1ES1011+496 based on an optical spectrum that reveals the absorption lines of the host galaxy. The redshift of z=0.212 makes 1ES1011+496 the most distant source observed to emit VHE gamma-rays up to date.Comment: 4 pages, 6 figures, minor changes to fit the ApJ versio

    Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

    Get PDF
    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius AA. Also the events detected simultaneously by the surface and fluorescence detectors (the `hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.Comment: Matches published versio

    Evidence for Divergent Evolution of Growth Temperature Preference in Sympatric Saccharomyces Species

    Get PDF
    The genus Saccharomyces currently includes eight species in addition to the model yeast Saccharomyces cerevisiae, most of which can be consistently isolated from tree bark and soil. We recently found sympatric pairs of Saccharomyces species, composed of one cryotolerant and one thermotolerant species in oak bark samples of various geographic origins. In order to contribute to explain the occurrence in sympatry of Saccharomyces species, we screened Saccharomyces genomic data for protein divergence that might be correlated to distinct growth temperature preferences of the species, using the dN/dS ratio as a measure of protein evolution rates and pair-wise species comparisons. In addition to proteins previously implicated in growth at suboptimal temperatures, we found that glycolytic enzymes were among the proteins exhibiting higher than expected divergence when one cryotolerant and one thermotolerant species are compared. By measuring glycolytic fluxes and glycolytic enzymatic activities in different species and at different temperatures, we subsequently show that the unusual divergence of glycolytic genes may be related to divergent evolution of the glycolytic pathway aligning its performance to the growth temperature profiles of the different species. In general, our results support the view that growth temperature preference is a trait that may have undergone divergent selection in the course of ecological speciation in Saccharomyces

    Characterization of the cork oak transcriptome dynamics during acorn development

    Get PDF
    Background: Cork oak (Quercus suber L.) has a natural distribution across western Mediterranean regions and is a keystone forest tree species in these ecosystems. The fruiting phase is especially critical for its regeneration but the molecular mechanisms underlying the biochemical and physiological changes during cork oak acorn development are poorly understood. In this study, the transcriptome of the cork oak acorn, including the seed, was characterized in five stages of development, from early development to acorn maturation, to identify the dominant processes in each stage and reveal transcripts with important functions in gene expression regulation and response to water. Results: A total of 80,357 expressed sequence tags (ESTs) were de novo assembled from RNA-Seq libraries representative of the several acorn developmental stages. Approximately 7.6 % of the total number of transcripts present in Q. suber transcriptome was identified as acorn specific. The analysis of expression profiles during development returned 2,285 differentially expressed (DE) transcripts, which were clustered into six groups. The stage of development corresponding to the mature acorn exhibited an expression profile markedly different from other stages. Approximately 22 % of the DE transcripts putatively code for transcription factors (TF) or transcriptional regulators, and were found almost equally distributed among the several expression profile clusters, highlighting their major roles in controlling the whole developmental process. On the other hand, carbohydrate metabolism, the biological pathway most represented during acorn development, was especially prevalent in mid to late stages as evidenced by enrichment analysis. We further show that genes related to response to water, water deprivation and transport were mostly represented during the early (S2) and the last stage (S8) of acorn development, when tolerance to water desiccation is possibly critical for acorn viability. Conclusions: To our knowledge this work represents the first report of acorn development transcriptomics in oaks. The obtained results provide novel insights into the developmental biology of cork oak acorns, highlighting transcripts putatively involved in the regulation of the gene expression program and in specific processes likely essential for adaptation. It is expected that this knowledge can be transferred to other oak species of great ecological value.Fundação para a Ciência e a Tecnologi

    Polo kinase recruitment via the constitutive centromere-associated network at the kinetochore elevates centromeric RNA

    Get PDF
    The kinetochore, a multi-protein complex assembled on centromeres, is essential to segregate chromosomes during cell division. Deficiencies in kinetochore function can lead to chromosomal instability and aneuploidy-a hallmark of cancer cells. Kinetochore function is controlled by recruitment of regulatory proteins, many of which have been documented, however their function often remains uncharacterized and many are yet to be identified. To identify candidates of kinetochore regulation we used a proteome-wide protein association strategy in budding yeast and detected many proteins that are involved in post-translational modifications such as kinases, phosphatases and histone modifiers. We focused on the Polo-like kinase, Cdc5, and interrogated which cellular components were sensitive to constitutive Cdc5 localization. The kinetochore is particularly sensitive to constitutive Cdc5 kinase activity. Targeting Cdc5 to different kinetochore subcomplexes produced diverse phenotypes, consistent with multiple distinct functions at the kinetochore. We show that targeting Cdc5 to the inner kinetochore, the constitutive centromere-associated network (CCAN), increases the levels of centromeric RNA via an SPT4 dependent mechanism

    Transcriptome dynamics of a broad host-range cyanophage and its hosts

    Get PDF
    Cyanobacteria are highly abundant in the oceans and are constantly exposed to lytic viruses. The T4-like cyanomyoviruses are abundant in the marine environment and have broad host-ranges relative to other cyanophages. It is currently unknown whether broad host-range phages specifically tailor their infection program for each host, or employ the same program irrespective of the host infected. Also unknown is how different hosts respond to infection by the same phage. Here we used microarray and RNA-seq analyses to investigate the interaction between the Syn9 T4-like cyanophage and three phylogenetically, ecologically and genomically distinct marine Synechococcus strains: WH7803, WH8102 and WH8109. Strikingly, Syn9 led a nearly identical infection and transcriptional program in all three hosts. Different to previous assumptions for T4-like cyanophages, three temporally regulated gene expression classes were observed. Furthermore, a novel regulatory element controlled early-gene transcription, and host-like promoters drove middle gene transcription, different to the regulatory paradigm for T4. Similar results were found for the P-TIM40 phage during infection of Prochlorococcus NATL2A. Moreover, genomic and metagenomic analyses indicate that these regulatory elements are abundant and conserved among T4-like cyanophages. In contrast to the near-identical transcriptional program employed by Syn9, host responses to infection involved host-specific genes primarily located in hypervariable genomic islands, substantiating islands as a major axis of phage-cyanobacteria interactions. Our findings suggest that the ability of broad host-range phages to infect multiple hosts is more likely dependent on the effectiveness of host defense strategies than on differential tailoring of the infection process by the phage
    corecore