120 research outputs found

    Influence of Physicochemical Characteristics of Bean Crop Soil in Trichoderma spp. Development

    Get PDF
    [EN] Spain has ranked 6th on the harvested bean area and 8th in bean production in the European Union (EU). The soils of this area have mixed silt loam and sandy loam texture, with moderate clay content, neutral or acidic pH, rich in organic matter and low carbonate levels, providing beans with high water absorption capacity and better organoleptic qualities after cooking. Similar to other crops, it is attacked by some phytopathogens. Hitherto, chemical methods have been used to control these organisms. However, with the Reform of the Community Agrarian Policy in the EU, the number of authorized plant protection products has been reduced to prevail food security, as well as to be sustainable in the long term, giving priority to the non-chemical methods that use biological agents, such as Trichoderma. This study aimed to investigate the relative importance of various crop soil parameters in the adaptation of Trichoderma spp. autoclaved soils (AS) and natural soils (NS) from the Protected Geographical Indication (PGI) “Alubia La Bañeza—León” that were inoculated with Trichoderma velutinum T029 and T. harzianum T059 and incubated in a culture chamber at 25◦C for 15 days. Their development was determined by quantitative PCR. Twelve soil samples were selected and analyzed from the productive zones of Astorga, La Bañeza, La Cabrera, Esla-Campos and Páramo. Their physicochemical characteristics were different by zone, as the texture of soils ranged between sandy loam and silt loam and the pH between strongly acid and slightly alkaline, as well as the organic matter (OM) concentration between low and remarkably high. Total C and N concentrations and their ratio were between medium and high in most of the soils and the rest of the micronutrients had an acceptable concentration except for Paramo’s soil. Both Trichoderma species developed better in AS than in NS, T. velutinum T029 grew better with high levels of OM, total C, ratio C:N, P, K, Fe, and Zn than T. harzianum T059 in clay soils, with the highest values of cation exchange capacity (CEC), pH, Ca, Mg and Mn. These effects were validated by Canonical Correlation Analysis (CCA), texture, particularly clay concentration, OM, electrical conductivity (EC), and pH (physical parameters) and B and Cu (soil elements) are the main factors explaining the influence in the Trichoderma development. OM, EC, C:N ratio and Cu are the main soil characteristics that influence in T. velutinum T029 development and pH in the development of T. harzianum T059.SIThis research was funded by Junta de Castilla y León, Consejería de Educación for the project “Application of Trichoderma strains in sustainable quality bean production” (LE251P18

    Assessment of an educational intervention to improve healthy life habits in children living in vulnerable socioeconomic conditions

    Get PDF
    Producción CientíficaNutritional condition impacts academic performance and cognitive development. In Peru, the prevalence of chronic undernutrition in children is 6.9%, increasing the risk of mortality and morbidity. This study aimed to develop an educational intervention to achieve an improvement in the healthy habits of children in a primary education school in Lima who live in vulnerable socioeconomic conditions. We conducted a prospective quasi-experimental pre-test and post-test study of an educational intervention. The information was collected through the adaptation of the WHO questionnaire “Global School-based Student Health Survey” (GSHS), with anthropometric variables, socioeconomic level, hygiene and eating habits. One hundred eight students from 5 to 13 years old from Arenitas del Mar School in Lima (Peru) participated. The educational intervention improved eating habits. Fruit and vegetable consumption 3 or more times/day (50.9%) increased after the educational intervention (49% vs. 62.9%,) p < 0.0001. There was an improvement in hygiene habits, such as the frequency of handwashing with soap (32.4% vs. 63.9%) and the frequency of weekly bathing 4–6 times/week (25% vs. 47.5%) p < 0.0001. The educational intervention promoted better healthy living behaviors, eating habits and hygiene. This kind of initiative is a crucial tool to establish healthy living habits

    C3G promotes a selective release of angiogenic factors from activated mouse platelets to regulate angiogenesis and tumor metastasis

    Get PDF
    [EN]Previous observations indicated that C3G (RAPGEF1) promotes α-granule release, evidenced by the increase in P-selectin exposure on the platelet surface following its activation. The goal of the present study is to further characterize the potential function of C3G as a modulator of the platelet releasate and its implication in the regulation of angiogenesis. Proteomic analysis revealed a decreased secretion of anti-angiogenic factors from activated transgenic C3G and C3GΔCat platelets. Accordingly, the secretome from both transgenic platelets had an overall pro-angiogenic effect as evidenced by an in vitro capillary-tube formation assay with HUVECs (human umbilical vein endothelial cells) and by two in vivo models of heterotopic tumor growth. In addition, transgenic C3G expression in platelets greatly increased mouse melanoma cells metastasis. Moreover, immunofluorescence microscopy showed that the pro-angiogenic factors VEGF and bFGF were partially retained into α-granules in thrombin- and ADP-activated mouse platelets from both, C3G and C3GΔCat transgenic mice. The observed interaction between C3G and Vesicle-associated membrane protein (Vamp)-7 could explain these results. Concomitantly, increased platelet spreading in both transgenic platelets upon thrombin activation supports this novel function of C3G in α-granule exocytosis. Collectively, our data point out to the co-existence of Rap1GEF-dependent and independent mechanisms mediating C3G effects on platelet secretion, which regulates pathological angiogenesis in tumors and other contexts. The results herein support an important role for platelet C3G in angiogenesis and metastasis

    C3G, through its GEF activity, induces megakaryocytic differentiation and proplatelet formation

    Get PDF
    [Background]: Megakaryopoiesis allows platelet formation, which is necessary for coagulation, also playing an important role in different pathologies. However, this process remains to be fully characterized. C3G, an activator of Rap1 GTPases, is involved in platelet activation and regulates several differentiation processes. [Methods]: We evaluated C3G function in megakaryopoiesis using transgenic mouse models where C3G and C3GΔCat (mutant lacking the GEF domain) transgenes are expressed exclusively in megakaryocytes and platelets. In addition, we used different clones of K562, HEL and DAMI cell lines with overexpression or silencing of C3G or GATA-1. [Results]: We found that C3G participates in the differentiation of immature hematopoietic cells to megakaryocytes. Accordingly, bone marrow cells from transgenic C3G, but not those from transgenic C3GΔCat mice, showed increased expression of the differentiation markers CD41 and CD61, upon thrombopoietin treatment. Furthermore, C3G overexpression increased the number of CD41+ megakaryocytes with high DNA content. These results are supported by data obtained in the different models of megakaryocytic cell lines. In addition, it was uncovered GATA-1 as a positive regulator of C3G expression. Moreover, C3G transgenic megakaryocytes from fresh bone marrow explants showed increased migration from the osteoblastic to the vascular niche and an enhanced ability to form proplatelets. Although the transgenic expression of C3G in platelets did not alter basal platelet counts, it did increase slightly those induced by TPO injection in vivo. Moreover, platelet C3G induced adipogenesis in the bone marrow under pathological conditions. [Conclusions]: All these data indicate that C3G plays a significant role in different steps of megakaryopoiesis, acting through a mechanism dependent on its GEF activity.This work was supported by grants from the Spanish Ministry of Economy and Competitiveness [SAF2013–48210-C2–1-R and SAF2016–76588-C2–2-R to CG, SAF2013–48210-C2–2-R and SAF2016–76588-C2–1-R to AP], and by two grants from the Council of Education of Junta de Castilla y León, Spain [SA157A12–1 and SA017U16 to CG]. All funding was cosponsored by the European FEDER Program

    Endoplasmic reticulum stress sensor IRE1α enhances IL-23 expression by human dendritic cells

    Get PDF
    Producción CientíficaHuman monocyte-derived dendritic cells (DCs) exposed to pathogen-associated molecular patterns (PAMPs) undergo bioenergetic changes that influence the immune response. We found that stimulation with PAMPs enhanced glycolysis in DCs, whereas oxidative phosphorylation remained unaltered. Glucose starvation and the hexokinase inhibitor 2-deoxy-d-glucose (2-DG) modulated cytokine expression in stimulated DCs. Strikingly, IL23A was markedly induced upon 2-DG treatment, but not during glucose deprivation. Since 2-DG can also rapidly inhibit protein N-glycosylation, we postulated that this compound could induce IL-23 in DCs via activation of the endoplasmic reticulum (ER) stress response. Indeed, stimulation of DCs with PAMPs in the presence of 2-DG robustly activated inositol-requiring protein 1α (IRE1α) signaling and to a lesser extent the PERK arm of the unfolded protein response. Additional ER stressors such as tunicamycin and thapsigargin also promoted IL-23 expression by PAMP-stimulated DCs. Pharmacological, biochemical, and genetic analyses using conditional knockout mice revealed that IL-23 induction in ER stressed DCs stimulated with PAMPs was IRE1α/X-box binding protein 1-dependent upon zymosan stimulation. Interestingly, we further evidenced PERK-mediated and CAAT/enhancer-binding protein β-dependent trans-activation of IL23A upon lipopolysaccharide treatment. Our findings uncover that the ER stress response can potently modulate cytokine expression in PAMP-stimulated human DCs.Plan Nacional de Salud y Farmacia (Proyecto SAF2013-44521-R

    Decreased salivary lactoferrin levels are specific to Alzheimer's disease

    Get PDF
    Background: Evidences of infectious pathogens in Alzheimer's disease (AD) brains may suggest a deteriorated innate immune system in AD pathophysiology. We previously demonstrated reduced salivary lactoferrin (Lf) levels, one of the major antimicrobial proteins, in AD patients. Methods: To assess the clinical utility of salivary Lf for AD diagnosis, we examine the relationship between salivary Lf and cerebral amyloid-beta (A beta) load using amyloid-Positron-Emission Tomography (PET) neuroimaging, in two different cross-sectional cohorts including patients with different neurodegenerative disorders. Findings: The diagnostic performance of salivary Lf in the cohort 1 had an area under the curve [AUC] of 0.95 (0.911-0.992) for the differentiation of the prodromal AD/AD group positive for amyloid-PET (PET+) versus healthy group, and 0.97 (0.924-1) versus the frontotemporal dementia (FTD) group. In the cohort 2, salivary Lf had also an excellent diagnostic performance in the health control group versus prodromal AD comparison: AUC 0.93 (0.876-0.989). Salivary Lf detected prodromal AD and AD dementia distinguishing them from FTD with over 87% sensitivity and 91% specificity. Interpretation: Salivary Lf seems to have a very good diagnostic performance to detect AD. Our findings support the possible utility of salivary Lf as a new non-invasive and cost-effective AD biomarker.This study was supported by Dr. Carro grants from Instituto de Salud Carlos III (FIS15/00780, FIS18/00118), FEDER, Comunidad de Madrid (S2017/BMD-3700; NEUROMETAB-CM), and CIBERNED (PI2016/01). This study was also supported by research grants from the Spanish Ministry of Economy and Competitiveness (SAF201785310-R to Dr. Cantero, PSI2017-85311-P to Dr. Atienza); International Centre on ageing CENIE-POCTEP (0348_CIE_6_E to Dr. Atienza); and CIBERNED (CB06/05/1111 to Dr. Cantero). Dr. Bueno receives research funding from the Instituto de Salud Carlos III, Spain (PIE16/00021, PI17/01799). The H2H-Spain Study was supported in Spain by grant PIE16/00021 from Instituto Carlos III, Ministry of Science, Innovation and Universities, and additional funds from the Centro Nacional de Investigaciones Cardiovasculares (CNIC). The CNIC is supported by the Ministry of Economy, Industry and Competitiveness and the Pro CNIC Foundation, and is a Severo Ochoa Centre of Excellence (SEV-2015-0505). The funders had no role in the conceptualisation, study design, data collection analysis and preparation of this manuscript

    Tricarboxylic acid cycle activity and remodeling of glycerophosphocholine lipids support cytokine induction in response to fungal patterns

    Get PDF
    Producción CientíficaIncreased glycolysis parallels immune cell activation, but the role of pyruvate remains largely unexplored. We found that stimulation of dendritic cells with the fungal surrogate zymosan causes decreases of pyruvate, citrate, itaconate, and a-ketoglutarate, while increasing oxaloacetate, succinate, lactate, oxygen consumption, and pyruvate dehydrogenase activity. Expression of IL10 and IL23A (the gene encoding the p19 chain of IL-23) depended on pyruvate dehydrogenase activity. Mechanistically, pyruvate reinforced histone H3 acetylation, and acetate rescued the effect of mitochondrial pyruvate carrier inhibition, most likely because it is a substrate of the acetyl-CoA producing enzyme ACSS2. Mice lacking the receptor of the lipid mediator platelet-activating factor (PAF; 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine) showed reduced production of IL-10 and IL-23 that is explained by the requirement of acetyl-CoA for PAF biosynthesis and its ensuing autocrine function. Acetyl-CoA therefore intertwines fatty acid remodeling of glycerophospholipids and energetic metabolism during cytokine induction.Plan Nacional de Salud y Farmacia (Proyectos SAF2013-44521-R, SAF2017-83079-R, BFU2014-53469-P, and BFU201)4- 53469-PJunta de Castilla y León - Fondo Social Europeo (Proyecto CSI035P17

    DPYD Exome, mRNA Expression and Uracil Levels in Early Severe Toxicity to Fluoropyrimidines: An Extreme Phenotype Approach

    Get PDF
    Dihydropyrimidine dehydrogenase deficiency is a major cause of severe fluoropyrimidine-induced toxicity and could lead to interruption of chemotherapy or life-threatening adverse reactions. This study aimed to characterize the DPYD exon sequence, mRNA expression and in vivo DPD activity by plasma uracil concentration. It was carried out in two groups of patients with extreme phenotypes (toxicity versus control) newly treated with a fluoropyrimidine, during the first three cycles of treatment. A novel nonsense gene variant (c.2197insA) was most likely responsible for fluoropyrimidine-induced toxicity in one patient, while neither DPYD mRNA expression nor plasma uracil concentration was globally associated with early toxicity. Our present work may help improve pharmacogenetic testing to avoid severe and undesirable adverse reactions to fluoropyrimidine treatment and it also supports the idea of looking beyond DPYD
    corecore