55 research outputs found

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Avances en la reforma institucional, políticas y organización del sector privado para participar en el proceso de apertura de Costa Rica: informe final

    No full text
    479 páginasEl documento se refiere a la identificación de la oferta exportable del complejo agropecuario-agroindustrial; a la reforma institucional, a la legislación; y a los procesos administrativos. Luego se refiere a la reforma de la política económica, a la participacion del sector privado, su reacción, a organización del complejo agropecuario-agroindustrial y al papel de la inversión extranjera directa

    Immunocompromised patients with acute respiratory distress syndrome: Secondary analysis of the LUNG SAFE database

    Get PDF
    Background: The aim of this study was to describe data on epidemiology, ventilatory management, and outcome of acute respiratory distress syndrome (ARDS) in immunocompromised patients. Methods: We performed a post hoc analysis on the cohort of immunocompromised patients enrolled in the Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG SAFE) study. The LUNG SAFE study was an international, prospective study including hypoxemic patients in 459 ICUs from 50 countries across 5 continents. Results: Of 2813 patients with ARDS, 584 (20.8%) were immunocompromised, 38.9% of whom had an unspecified cause. Pneumonia, nonpulmonary sepsis, and noncardiogenic shock were their most common risk factors for ARDS. Hospital mortality was higher in immunocompromised than in immunocompetent patients (52.4% vs 36.2%; p &lt; 0.0001), despite similar severity of ARDS. Decisions regarding limiting life-sustaining measures were significantly more frequent in immunocompromised patients (27.1% vs 18.6%; p &lt; 0.0001). Use of noninvasive ventilation (NIV) as first-line treatment was higher in immunocompromised patients (20.9% vs 15.9%; p = 0.0048), and immunodeficiency remained independently associated with the use of NIV after adjustment for confounders. Forty-eight percent of the patients treated with NIV were intubated, and their mortality was not different from that of the patients invasively ventilated ab initio. Conclusions: Immunosuppression is frequent in patients with ARDS, and infections are the main risk factors for ARDS in these immunocompromised patients. Their management differs from that of immunocompetent patients, particularly the greater use of NIV as first-line ventilation strategy. Compared with immunocompetent subjects, they have higher mortality regardless of ARDS severity as well as a higher frequency of limitation of life-sustaining measures. Nonetheless, nearly half of these patients survive to hospital discharge. Trial registration: ClinicalTrials.gov, NCT02010073. Registered on 12 December 2013

    Assessing lost cultural heritage. A case study of the eastern coast of Las Palmas de Gran Canaria city (Spain)

    No full text

    Different Resources, Different Conflicts? A Framework for Understanding the Political Economy of Armed Conflict and Criminality in Colombian Regions

    No full text

    MOESM5 of Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma

    No full text
    Authors’ original file for figure

    MOESM1 of Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma

    No full text
    Additional file 1: Comparative properties and gene inventory of T. reesei, T. virens and T. atroviride. This file contains additional information on genomic properties and selected gene families from the three Trichoderma species comprising 19 tables. Table S1 summarizes the satellite sequences identified in the Trichoderma genomes and four other fungal genomes. Table S2 summarizes manually curated sequence alignments of transposable element families from the Trichoderma genomes. Table S3 lists the total number of CAZy families in Trichoderma and other fungi. Table S4 lists the glycoside hydrolase (GH) families in Trichoderma and other fungi. Table S5 lists the glycosyltransferase (GT) families in Trichoderma and other fungi. Table S6 lists the polysaccharide lyase (PL) families in Trichoderma and other fungi. Table S7 lists the carbohydrate esterase (CE) families in Trichoderma and other fungi. Table S8 lists the carbohydrate-binding module (CBM) families in Trichoderma and other fungi. Table S9 lists the NRPS, PKS and NRPS-PKS proteins in T. atroviride. Table S10 lists NRPS, PKS and NRPS-PKS proteins in T. virens. Table S11 lists the putative insecticidal toxins in Trichoderma. Table S12 lists the cytochrome P450 CYP4/CYP19/CYP26 class E proteins in Trichoderma. Table S13 lists the small-cysteine rich secreted protein from Trichoderma spp. Table S14 lists the most abundant PFAM domains in those genes that are unique to T. atroviride and T. virens and not present in T. reesei. Table S15 surveys the assembly statistics. Table S16 provides gene model support. Table S17 summarizes gene model statistics. Table S18 provides numbers of genes with functional annotation according to KOG, Gene Ontology, and KEGG classifications. Table S19 lists the largest KOG families responsible for metabolism. (XLSX 57 KB
    corecore