2,211 research outputs found

    Revan-degree indices on random graphs

    Full text link
    Given a simple connected non-directed graph G=(V(G),E(G))G=(V(G),E(G)), we consider two families of graph invariants: RXΣ(G)=uvE(G)F(ru,rv)RX_\Sigma(G) = \sum_{uv \in E(G)} F(r_u,r_v) (which has gained interest recently) and RXΠ(G)=uvE(G)F(ru,rv)RX_\Pi(G) = \prod_{uv \in E(G)} F(r_u,r_v) (that we introduce in this work); where uvuv denotes the edge of GG connecting the vertices uu and vv, rur_u is the Revan degree of the vertex uu, and FF is a function of the Revan vertex degrees. Here, ru=Δ+δdur_u = \Delta + \delta - d_u with Δ\Delta and δ\delta the maximum and minimum degrees among the vertices of GG and dud_u is the degree of the vertex uu. Particularly, we apply both RXΣ(G)RX_\Sigma(G) and RXΠ(G)X_\Pi(G) on two models of random graphs: Erd\"os-R\'enyi graphs and random geometric graphs. By a thorough computational study we show that \left and \left, normalized to the order of the graph, scale with the average Revan degree \left; here \left denotes the average over an ensemble of random graphs. Moreover, we provide analytical expressions for several graph invariants of both families in the dense graph limit.Comment: 16 pages, 10 figure

    Investigation into Geomagnetic storms and ionospheric scintillation

    Get PDF
    Understanding how space weather phenomenon affects daily life has been a main focus of space weather studies. In particular, identifying the relationship between solar activities, ionospheric irregularities and consequently ionospheric scintillation has inspired numerous research efforts. Geomagnetic storms fueled by solar activities cause ionospheric irregularities. Ionospheric scintillation occurs when radio signals travel through these irregularities and experience rapid fluctuations in radio signal phase and amplitude. Such fluctuations have great consequences in radio wave based technology such as the Global Position system(GPS) as it causes a loss of lock. Therefore, through the implantation of two GPS Receivers, continuous data was obtained on phase and amplitude of radio signals from the Global Navigation Satellite Systems(GNSS). This data was then thoroughly analyzed to identify scintillation signatures. On January 31st, 2019, scintillation signatures that correlated to a G1 minor geomagnetic storm were observed. In this paper, the method of analysis is adapted from the aforementioned case study to identify past geomagnetic events that possibly correlated with observed scintillation. Through this study, it is hoped that a correlation between geomagnetic storms and ionospheric scintillation in the mid-latitude region will be highlighted

    Cutavirus in cutaneous malignant melanoma

    Get PDF
    A novel human protoparvovirus related to human bufavirus and preliminarily named cutavirus has been discovered. We detected cutavirus in a sample of cutaneous malignant melanoma by using viral enrichment and high-throughput sequencing. The role of cutaviruses in cutaneous cancers remains to be investigated

    Using multimedia and peer assessment to promote collaborative e-learning

    Get PDF
    Collaborative e-learning is increasingly appealing as a pedagogical approach that can positively affect student learning. We propose a didactical model that integrates multimedia with collaborative tools and peer assessment to foster collaborative e-learning. In this paper, we explain it and present the results of its application to the “International Seminars on Materials Science” online course. The proposed didactical model consists of five educational activities. In the first three, students review the multimedia resources proposed by the teacher in collaboration with their classmates. Then, in the last two activities, they create their own multimedia resources and assess those created by their classmates. These activities foster communication and collaboration among students and their ability to use and create multimedia resources. Our purpose is to encourage the creativity, motivation, and dynamism of the learning process for both teachers and students

    A linear profit function for economic weights of linear phenotypic selection indices in plant breeding

    Get PDF
    The profit function (net returns minus costs) allows breeders to derive trait economic weights to predict the net genetic merit (H) using the linear phenotypic selection index (LPSI). Economic weight is the increase in profit achieved by improving a particular trait by one unit and should reflect the market situation and not only preferences or arbitrary values. In maize (Zea mays L.) and wheat (Triticum aestivum) breeding programs, only grain yield has a specific market price, which makes application of a profit function difficult. Assuming the traits’ phenotypic values have multivariate normal distribution, we used the market price of grain yield and its conditional expectation given all the traits of interest to construct a profit function and derive trait economic weights in maize and wheat breeding. Using simulated and real maize and wheat datasets, we validated the profit function by comparing its results with the results obtained from a set of economic weights from the literature. The criteria to validate the function were the estimated values of the LPSI selection response and the correlation between LPSI and H. For our approach, the maize and wheat selection responses were 1,567.13 and 1,291.5, whereas the correlations were .87 and .85, respectively. For the other economic weights, the selection responses were 0.79 and 2.67, whereas the correlations were .58 and .82, respectively. The simulated dataset results were similar. Thus, the profit function is a good option to assign economic weights in plant breeding

    Envirome-wide associations enhance multi-year genome-based prediction of historical wheat breeding data

    Get PDF
    Linking high-throughput environmental data (enviromics) to genomic prediction (GP) is a cost-effective strategy for increasing selection intensity under genotype-by-environment interactions (G × E). This study developed a data-driven approach based on Environment-Phenotype Associations (EPA) aimed at recycling important G × E information from historical breeding data. EPA was developed in two applications: (1) scanning a secondary source of genetic variation, weighted from the shared reaction-norms of past-evaluated genotypes; (2) pinpointing weights of the similarity among trial-sites (locations), given the historical impact of each envirotyping data variable for a given site. These results were then used as a dimensionality reduction strategy, integrating historical data to feed multi-environment GP models, which led to development of four new G × E kernels considering genomics, enviromics and EPA outcomes. The wheat trial data used included 36 locations, eight years and three target populations of environments (TPE) in India. Four prediction scenarios and six kernel-models within/across TPEs were tested. Our results suggest that the conventional GBLUP, without enviromic data or when omitting EPA, is inefficient in predicting the performance of wheat lines in future years. Nevertheless, when EPA was introduced as an intermediary learning step to reduce the dimensionality of the G × E kernels while connecting phenotypic and environmental-wide variation, a significant enhancement of G × E prediction accuracy was evident. EPA revealed that the effect of seasonality makes strategies such as “covariable selection” unfeasible because G × E is year-germplasm specific. We propose that the EPA effectively serves as a “reinforcement learner” algorithm capable of uncovering the effect of seasonality over the reaction-norms, with the benefits of better forecasting the similarities between past and future trialing sites. EPA combines the benefits of dimensionality reduction while reducing the uncertainty of genotype-by-year predictions and increasing the resolution of GP for the genotype-specific level

    Industrial, Collaborative and Mobile Robotics in Latin America: Review of Mechatronic Technologies for Advanced Automation

    Get PDF
    Mechatronics and Robotics (MaR) have recently gained importance in product development and manufacturing settings and applications. Therefore, the Center for Space Emerging Technologies (C-SET) has managed an international multi-disciplinary study to present, historically, the first Latin American general review of industrial, collaborative, and mobile robotics, with the support of North American and European researchers and institutions. The methodology is developed by considering literature extracted from Scopus, Web of Science, and Aerospace Research Central and adding reports written by companies and government organizations. This describes the state-of-the-art of MaR until the year 2023 in the 3 Sub-Regions: North America, Central America, and South America, having achieved important results related to the academy, industry, government, and entrepreneurship; thus, the statistics shown in this manuscript are unique. Also, this article explores the potential for further work and advantages described by robotic companies such as ABB, KUKA, and Mecademic and the use of the Robot Operating System (ROS) in order to promote research, development, and innovation. In addition, the integration with industry 4.0 and digital manufacturing, architecture and construction, aerospace, smart agriculture, artificial intelligence, and computational social science (human-robot interaction) is analyzed to show the promising features of these growing tech areas, considering the improvements to increase production, manufacturing, and education in the Region. Finally, regarding the information presented, Latin America is considered an important location for investments to increase production and product development, taking into account the further proposal for the creation of the LATAM Consortium for Advanced Robotics and Mechatronics, which could support and work on roboethics and education/R+D+I law and regulations in the Region. Doi: 10.28991/ESJ-2023-07-04-025 Full Text: PD

    Undergraduate Biology Education Research Gordon Research Conference: A Meeting Report

    Get PDF
    The 2019 Undergraduate Biology Education Research Gordon Research Conference (UBER GRC), titled “Achieving Widespread Improvement in Undergraduate Education,” brought together a diverse group of researchers and practitioners working to identify, promote, and understand widespread adoption of evidence-based teaching, learning, and success strategies in undergraduate biology. Graduate students and postdocs had the additional opportunity to present and discuss research during a Gordon Research Seminar (GRS) that preceded the GRC. This report provides a broad overview of the UBER GRC and GRS and highlights major themes that cut across invited talks, poster presentations, and informal discussions. Such themes include the importance of working in teams at multiple levels to achieve instructional improvement, the potential to use big data and analytics to inform instructional change, the need to customize change initiatives, and the importance of psychosocial supports in improving undergraduate student well-being and academic success. The report also discusses the future of the UBER GRC as an established meeting and describes aspects of the conference that make it unique, both in terms of facilitating dissemination of research and providing a welcoming environment for conferees

    Sparse kernel models provide optimization of training set design for genomic prediction in multiyear wheat breeding data

    Get PDF
    The success of genomic selection (GS) in breeding schemes relies on its ability to provide accurate predictions of unobserved lines at early stages. Multigeneration data provides opportunities to increase the training data size and thus, the likelihood of extracting useful information from ancestors to improve prediction accuracy. The genomic best linear unbiased predictions (GBLUPs) are performed by borrowing information through kinship relationships between individuals. Multigeneration data usually becomes heterogeneous with complex family relationship patterns that are increasingly entangled with each generation. Under these conditions, historical data may not be optimal for model training as the accuracy could be compromised. The sparse selection index (SSI) is a method for training set (TRN) optimization, in which training individuals provide predictions to some but not all predicted subjects. We added an additional trimming process to the original SSI (trimmed SSI) to remove less important training individuals for prediction. Using a large multigeneration (8 yr) wheat (Triticum aestivum L.) grain yield dataset (n = 68,836), we found increases in accuracy as more years are included in the TRN, with improvements of ∼0.05 in the GBLUP accuracy when using 5 yr of historical data relative to when using only 1 yr. The SSI method showed a small gain over the GBLUP accuracy but with an important reduction on the TRN size. These reduced TRNs were formed with a similar number of subjects from each training generation. Our results suggest that the SSI provides a more stable ranking of genotypes than the GBLUP as the TRN becomes larger
    corecore