
Received: 19 December 2021 Accepted: 17 July 2022

DOI: 10.1002/tpg2.20254

The Plant Genome

O R I G I N A L A R T I C L E

Sparse kernel models provide optimization of training set design
for genomic prediction in multiyear wheat breeding data

Marco Lopez-Cruz1 Susanne Dreisigacker2 Leonardo Crespo-Herrera2

Alison R Bentley2 Ravi Singh2 Jesse Poland3 Sandesh Shrestha3

Julio Huerta-Espino4 Velu Govindan2 Philomin Juliana2 Suchismita Mondal2

Paulino Pérez-Rodríguez5 Jose Crossa2,5

1Dep. of Epidemiology and Biostatistics, Michigan State Univ., East Lansing, MI, USA

2Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico

3Dep. of Agronomy, Kansas State Univ., Manhattan, KS, USA

4Campo Experimental Valle de Mexico, Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias (INIFAP), Chapingo, Mexico

5Colegio de Postgraduados, Montecillos, Mexico

Correspondence
Paulino Pérez-Rodríguez and Jose Crossa,

CIMMYT and Colegio de Postgraduados,

Mexico.

Email: perpdgo@gmail.com;

j.crossa@cgiar.org

Assigned to Associate Editor Jianming Yu.

Funding information
Bill and Melinda Gates Foundation;

Foundation for Research Levy on

Agricultural Products; Agricultural

Agreement Research Fund; National

Institute of Food and Agriculture,

Grant/Award Numbers: 2018-67015-27957,

2020-67013-30904; USAID

Abstract
The success of genomic selection (GS) in breeding schemes relies on its ability to

provide accurate predictions of unobserved lines at early stages. Multigeneration data

provides opportunities to increase the training data size and thus, the likelihood of

extracting useful information from ancestors to improve prediction accuracy. The

genomic best linear unbiased predictions (GBLUPs) are performed by borrowing

information through kinship relationships between individuals. Multigeneration data

usually becomes heterogeneous with complex family relationship patterns that are

increasingly entangled with each generation. Under these conditions, historical data

may not be optimal for model training as the accuracy could be compromised. The

sparse selection index (SSI) is a method for training set (TRN) optimization, in which

training individuals provide predictions to some but not all predicted subjects. We

added an additional trimming process to the original SSI (trimmed SSI) to remove

less important training individuals for prediction. Using a large multigeneration

(8 yr) wheat (Triticum aestivum L.) grain yield dataset (n = 68,836), we found

increases in accuracy as more years are included in the TRN, with improvements

of ∼0.05 in the GBLUP accuracy when using 5 yr of historical data relative to when

using only 1 yr. The SSI method showed a small gain over the GBLUP accuracy but

Abbreviations: GBLUP, genomic best linear unbiased prediction; GBS, genotyping-by-sequencing; GS, genomic selection; LD, linkage disequilibrium;

MSE, mean squared error; SSI, sparse selection index; TRN, training set; TSSI, trimmed sparse selection index; TST, prediction (testing) set.
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with an important reduction on the TRN size. These reduced TRNs were formed with

a similar number of subjects from each training generation. Our results suggest that

the SSI provides a more stable ranking of genotypes than the GBLUP as the TRN

becomes larger.

1 INTRODUCTION

Research in plant breeding methods is a crucial first step

to accelerate breeding progress to increase food production

and subsequently improve food security on a global scale.

Genomic selection (GS; Meuwissen et al., 2001) is being

implemented in many plant breeding programs to acceler-

ate the process of the development of new crop cultivars

(Crossa et al., 2017). Genomic selection consists of geno-

typing and phenotyping individuals in a reference population

(training set [TRN]) and, with the help of calibration meth-

ods (e.g., linear models or machine learning tools), predicting

the breeding values of the unobserved phenotypes of the can-

didates for selection that were only genotyped (prediction

set [TST]). Genomic selection shortens the breeding cycle

because data-driven predictions of unphenotyped individu-

als support a more comprehensive and reliable selection of

candidate individuals in earlier breeding generations than is

possible via traditional means.

There are several advantages of GS over conventional

selection including reducing costs by saving resources

required for labor-intensive phenotyping, saving time needed

for variety development by reducing the cycle length, increas-

ing the selection intensity and thus capturing greater gain per

unit time, selecting traits that are very difficult to measure, and

offering opportunities to improve the accuracy of the selec-

tion process. Undoubtedly, a successful implementation of GS

strongly depends on many factors such as the heritability of

the trait, family relationships, marker quality and density, link-

age disequilibrium (LD), genotype× environment interaction,

and composition of the TRNs and TSTs (Crossa et al., 2017).

However, the quality of the training data (that was phenotyped

and genotyped) for predicting the breeding values of the indi-

viduals in the TST (that was only genotyped) is one of the most

influential factors for increasing genomic prediction accuracy

(Lopez-Cruz & de los Campos, 2021).

A variety of models and methods can be described for

genomic prediction using information on phenotypes and

molecular markers. The most commonly used model is the lin-

ear additive genomic best linear unbiased predictor (GBLUP;

VanRaden, 2007, 2008) that uses an additive genomic rela-

tionship matrix derived from markers (VanRaden, 2008) for

predictions. Some genetic complexities (e.g., gene × gene

epistatic interactions) can be addressed by using semiparamet-

ric genomic regression to account for nonadditive variation.

One semiparametric genomic regression is the reproducing

kernel Hilbert spaces method with the Gaussian kernel (de los

Campos et al., 2009; Gianola et al., 2006, 2011, 2014; Morota

& Gianola, 2014; Morota et al., 2013) that models nonlinear

relationships between phenotype and genotype (Crossa et al.,

2019).

Genomic prediction in wheat breeding plays a fundamental

role, as it has the potential to increase the rate of genetic gain

relative to traditional phenotypic and pedigree-based selec-

tion. Despite the documented benefits of applying GS in plant

breeding and the various models and methods available for

assessing prediction accuracy, several limiting factors exist

that impede its full implementation: (a) cost of genotyping,

(b) insufficient number of individuals in the TRN, (c) training

individuals that do not represent or do not offer any increase

on the prediction accuracy of the individuals in the TST, and

(d) high heterogeneity between training and predicted indi-

viduals. Therefore, it is particularly important to identify an

optimal TRN for individuals in the TST. Usually, the algo-

rithm employed for selecting an optimal TRN maximizes the

relationship with the individuals in the TST whilst minimiz-

ing the correlation among the training data. The algorithm

then makes the prediction and finally selects the candidates

with the highest genomic estimated breeding values (Rincent

et al., 2012; Akdemir et al., 2015; Pszczola & Calus, 2016;

Akdemir & Isidro-Sanchez, 2019).

Most of the methods for TRN optimization assume that a

single TRN is optimal for all the individuals in the TST. How-

ever, this is a weak assumption that is rarely proven because

some lines in the TRN can increase prediction for some, but

not all, lines in the TST. Results from different studies (Lorenz

& Smith, 2015; Lopez-Cruz & de los Campos, 2021; Lopez-

Cruz et al., 2021) indicate that borrowing information from

training individuals distantly related to the individuals in the

TST might have a negative impact on the prediction accu-

racy because of the heterogeneity of allele frequency and LD

between TRN and TST. That is, the prediction of individu-

als in the TST relies on the ability to borrow similar alleles

and haplotypes from the training data. Evidence suggests that

when training individuals are distantly related to those in the

TST, the genomic prediction accuracy can even be reduced

(de los Campos et al., 2013).

To overcome the main problem of inclusion in the TRN

of individuals distantly related to those to be predicted (with

the known detrimental consequences on prediction accuracy),

Lopez-Cruz and de los Campos (2021) developed a genomic

prediction method that efficiently optimizes the TRN by
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finding subsets of individuals for each individual in the TST.

The authors proposed integrating sparsity into a selection

index (sparse selection index [SSI]) by means of a regular-

ization parameter (λ ≥ 0), noting that the SSI can be seen

as a sparse version of the GBLUP. Results of applications

of the SSI showed increased genomic prediction accuracy for

grain yield between 5 and 10% in wheat (Triticum aestivum
L.) (Lopez-Cruz & de los Campos, 2021) and between 5 and

17% in maize (Zea mays L.) (Lopez-Cruz et al., 2021) relative

to the GBLUP.

Several analyses based on different original models and

methods have been performed on the extensive historical data

set generated by the Global Wheat Program of the Interna-

tional Maize and Wheat Improvement Center (CIMMYT).

Pérez-Rodríguez et al. (2017) analyzed a CIMMYT wheat

data set to evaluate the prediction performance of phenotypes

across environments using single-step genomic and pedigree

models incorporating genotype × environment interactions.

The data set comprised a total of 58,798 lines derived from

years 2009 through 2016 evaluated at several environments in

Mexico and southern Asia with the objective of breeding for

high grain yield and resilience to drought, heat, and late heat

(Crespo-Herrera et al., 2021). Lopez-Cruz and de los Campos

(2021) presented the novel SSI optimization method using a

subset of this CIMMYT data containing 29,484 wheat lines

corresponding to the environments in Mexico only. Howard

et al. (2019) used the multiple-environment CIMMYT wheat

data from years 2014 through 2017 for 35,403 1-yr tested lines

to evaluate the prediction accuracy of models including pedi-

gree and genomic information. Pérez-Rodríguez et al. (2020)

analyzed a larger CIMMYT data set including 45,099 wheat

lines derived from years 2014 through 2018 for a single envi-

ronment to evaluate the predictive power of historical data.

More recently, Dreisigacker et al. (2021) presented updated

pedigree and genomic prediction analyses using an extended

data set including years 2014 through 2019 for a total of

52,242 wheat genotypes.

Based on the above considerations and on the previous

analyses performed on part of the extensive CIMMYT wheat

multigeneration data, the present study used all historical data

since 2014 to 2021 with the main objectives of (a) computing

the genomic prediction accuracy of the SSI and the GBLUP

and (b) to examine if adding more previous years to the TRN

increases the genome-enabled accuracy of prediction of grain

yield performance of the wheat lines in 2019, 2020, and 2021

cycles. An important motivation of this research was to use

the SSI to examine the effective number of wheat lines in the

TRN that participate on the prediction of the wheat lines in the

TST. Furthermore, we added an extra trimming process to the

original SSI method to further remove less important training

individuals for prediction. This is named trimmed SSI (TSSI)

to distinguish it from the original SSI application. We used

two metrics to assess the genomic prediction accuracy: (a)

Core Ideas
∙ Training set optimization is desirable when using

large heterogeneous, multigeneration data.

∙ The SSI and TSSI provide customized TRNs for

each selection candidate.

∙ TSSI provides a reduced TRN that maximizes

prediction accuracy and minimizes MSE.

∙ All generations are still present in the reduced TRN

with an equal number of individuals from each

generation.

the correlation between the observed and predicted values and

(b) the mean squared error (MSE) of prediction. The dataset

used in this study includes a total of 68,836 wheat lines geno-

typed with 11,293 genotyping-by-sequencing (GBS) markers

that were evaluated during eight cycles (2014–2021).

2 MATERIALS AND METHODS

2.1 Phenotypic data

The previous study of Dreisigacker et al. (2021) for evaluat-

ing pedigree and genomic prediction using 52,242 CIMMYT

wheat lines comprised data from the years 2014 through 2019.

The dataset in this study incorporates data from two more

years of evaluations (2020 and 2021). This dataset includes

grain yield records for a total of 68,836 wheat lines that were

evaluated at the Norman E. Borlaug Experimental Station in

Ciudad Obregon, Mexico, under optimal field management

conditions during eight cycles (2014–2021). Original data

from each year make up a large number of the trials (200–300)

where each trial is comprised of a total of 30 wheat lines estab-

lished in an alpha-lattice design of five incomplete blocks of

size six lines with three replicates. Phenotypes were corrected

by the experimental design by calculating the best linear unbi-

ased estimates of the lines within year. The basic model for

each year included an intercept, the random effects of trials,

the random effects of the replicates within trials, the random

effects of the incomplete blocks within trials and replicates,

and the fixed effects of the breeding lines within trials. The

corrected grain yield was obtained as the intercept plus the

effect of the line.

2.2 Genotype data

The genotypic information consisted of 11,293 GBS mark-

ers for all lines. Genotyping was performed using the GBS
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method (see Poland et al. [2012] and Glaubitz et al. [2014]

for more details) with lines sequenced using an Illumina

HiSeq2500 sequencer at Kansas State University. Marker

polymorphisms were called with TASSEL (https://tassel.

bitbucket.io) v5.0 and the GBS pipeline (Glaubitz et al., 2014)

v2. We filtered markers by keeping only those with <30% of

missing values. The markers passing this filter were imputed

using the observed allelic frequencies. After imputing, we

removed markers with a minor allelic frequency <0.05. After

quality control and imputation, a total of 6,978 markers were

available for predictions.

2.3 Genomic prediction models and
methods

We used the GBLUP as a baseline model for genomic pre-

diction of grain yield. Next, we used the SSI as an extension

of the GBLUP to obtain a sparse ‘Hat’ matrix from which

predictions were derived. Finally, we trimmed the TRN by

discarding training individuals with the lowest proportion of

nonzero values in the sparse Hat matrix.

2.4 GBLUP model

In the GBLUP, the phenotype of the response (grain yield) for

the ith individual yi (i = 1, 2, . . . , n) is modeled as the sum of

its genetic value ui plus a residual term εi as follows:

𝑦𝑖 = 𝑢𝑖 + ε𝑖 (1)

where the genetic and residual are considered random vari-

ables. Vectors u = {ui} and ε = {εi} are assumed to

be normally distributed as 𝒖 ∼ 𝑀𝑉𝑁(𝟎, σ2
𝑢
𝐆) and 𝛆 ∼

𝑀𝑉𝑁(𝟎, σ2ε𝐈), respectively, where σ2
𝑢

is the genetic vari-

ance, G is an additive genetic relationship matrix, σ2ε is the

residual variance, and I is an identity matrix. The response

was previously centered and scaled within year (by sub-

tracting the year sample mean to each observation and then

dividing the resulting quantity by the year standard devia-

tion), therefore, no fixed effects for year nor intercept were

considered.

The predicted genetic values for all subjects in a predic-

tion (or testing, TST) set are �̂�TST = {�̂�𝑖}(𝑖 = 1, 2,… , 𝑛TST).
These predictions are simply regressions on the observa-

tions from the training (TRN) data as �̂�TST = �̂�𝐲TRN. The

matrix �̂� = {�̂�𝑖𝑗}(𝑖 = 1, 2,… , 𝑛TST, 𝑗 = 1, 2,… , 𝑛TRN) is the

so-called Hat projection matrix with dimensions nTST × nTRN,

containing, at the ith row, estimates of the regression coeffi-

cients on all nTRN training subjects, �̂�𝑖 = [�̂�𝑖1, �̂�𝑖2,… , �̂�𝑖𝑛TRN
],

when predicting the genetic value of the ith testing individual.

This matrix is given by the following:

�̂� = 𝐆TST,TRN
(
𝐆TRN + θ𝐈

)−1
(2)

where GTST,TRN is the nTST × nTRN matrix containing the

genetic relationships between predicted subjects and those

in the TRN, GTRN is the genetic relationship matrix of the

training data, and θ = σ2ε∕σ
2
u is the ratio between residual and

genetic variances.

2.5 Sparse selection index

This approach combines a sparsity-inducing technique with

the selection index theory. In the SSI, the regression coeffi-

cients for the ith predicted individual (bi in Equation 2) are

subjected to sparsity by considering a penalized version of the

selection index optimization problem as follows:

�̃�𝑖 = argmin
𝑏𝑖

{1
2
𝐛′𝑖

(
𝐆TRN + θ𝐈

)
𝐛𝑖

− 𝐆TST(𝑖),TRN𝐛𝑖 + λ‖‖𝐛𝑖‖‖1
}

(3)

where GTST(i),TRN is the ith row vector of the matrix

GTST,TRN; λ is a sparsity-controlling parameter; and ‖𝐛𝑖‖1 =∑𝑛TRN
𝑗=1 |𝑏𝑖𝑗| is an L1-penalty on the coefficients bi. The sparse

Hat matrix is then �̃� = {�̃�𝑖𝑗} and contains, at the ith row, the

vector �̃�𝑖 with the solutions to the above-mentioned problem.

When λ= 0, the resulting matrix is equal to that of the GBLUP

model, that is, �̃� = �̂�. A value of λ > 0 produces a sparse

Hat matrix with which training individuals contribute to the

prediction of some but not all individuals in the TST.

2.6 Trimmed sparse selection index

An extra trimming process was added to the original SSI

method to completely remove less important training individ-

uals for prediction. We will refer as the ‘trimmed SSI’ (TSSI)

to the SSI with the trimmed TRN to distinguish it from the

original SSI application.

We trimmed the TRN by zeroing out complete columns

from the sparse Hat matrix (with dimensions nTST × nTRN)

that have a certain frequency of nonzero values, 𝐹TRN(𝑗) =∑𝑛TST
𝑖=1 1(𝑏𝑖𝑗 ≠ 0), where 1(⋅) is the indicator function that

returns the value 1 if 𝑏𝑖𝑗 ≠ 0 and 0 otherwise. We discarded

the jth training element whose value FTRN(j) was smaller

than the quantile Qp of the distribution of FTRN(j) and per-

forming this task for quantiles between p = .05 and p = .8

with steps of .05. The resulting SSI (TSSI) obtained with

https://tassel.bitbucket.io
https://tassel.bitbucket.io
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T A B L E 1 Size of the training set (nTRN) used for each prediction

set (TST)

TRN

TST (nTST)
2021 (7,893) 2020 (8,701) 2019 (8,928)

TRN1 8,701 8,928 8,310

TRN1–2 17,629 17,238 17,702

TRN1–3 25,939 26,630 26,974

TRN1–4 35,331 35,902 35,908

TRN1–5 44,603 44,836 43,314

Note. TRN, training sets composed of one cycle previous to the TST (TRN1), and

cumulative sets (TRN1–k) formed with the closest k (k = 2, 3, 4, or 5) cycles before

the TST.

the trimmed sparse Hat matrix was denoted as TSSI1–p. The

original SSI using the untrimmed sparse Hat matrix is equiva-

lent to the TSSI1.0 where no training individuals are dropped.

The importance of the TSSI is that the discarded training

individuals do not contribute to the prediction of any pre-

dicted individuals. Note that despite the fact that the TSSI

method can optimize the TRN by removing the distantly

related individuals, the genotypes are still required for these

distantly related individuals (trimmed individuals) when com-

puting the sparse Hat matrix before applying the trimming

process.

2.7 Training and TSTs

The TSTs were composed of cycles TST = 2019, 2020, and

2021 separately. Five different TRNs were considered for each

TST. First, TRN1 was composed of individuals from 1 yr

before the TST, and then the TRNs were formed by accumu-

lating 2, 3, 4, or 5 previous years (denoted as TRN1–k, k = 2,

3, 4, 5). For example, to predict TST = 2021 genotypes, the

following sets were used: TRN1 = 2020, TRN1–2 = 2020 +
2019, . . . , TRN1–5 = 2020 + . . . +2016 (Table 1).

A genomic relationship matrix was calculated as 𝐆 =
𝐗𝐗′∕𝑝 (Lopez-Cruz et al., 2015), where X is the matrix

containing the p = 6,978 biallelic centered and standardized

markers. Genetic models (as in Equation 1) were fitted to

grain yield within each TST-TRN combination to estimate

variance components (σ2ε and σ2u) from which the variances

ratio and genomic heritability were estimated as θ̂ = σ̂2ε∕σ̂
2
𝑢

and ℎ̂2
𝑔
= σ̂2

𝑢
∕(σ̂2ε + σ̂2

𝑢
) , respectively. These estimates were

used to derive non-sparse and sparse Hat matrices (Equation 2

and 3). For the sparse Hat matrix, an extra step was required to

calculate an optimal value of the penalization λ (Equation 3).

A trimmed sparse Hat matrix was then obtained by zeroing

out complete columns from the sparse Hat matrix (see pre-

vious section). The genetic value predictions (�̂�TST) for the

prediction cycle with the GBLUP, SSI, and TSSI were com-

puted using the nonsparse, sparse, and trimmed sparse Hat

matrices, respectively.

Prediction accuracy was evaluated within each prediction

cycle as the Pearson correlation between observed and pre-

dicted values, cor(𝐲TST, �̂�TST). The prediction performance

was also assessed using the mean squared error as MSE =
1

𝑛TST

∑𝑛TST
𝑖=1 [𝑦TST(𝑖) − �̂�TST(𝑖)]

2
.

2.8 Optimizing the penalization parameter

An optimal value of the penalization parameter for the SSI

(in Equation 3) was found by internal cross-validation as

described in Lopez-Cruz et al. (2021). The procedure consists

of using each TRN for optimizing the penalized parameter

under different prediction cases using years 2019, 2020, and

2021 separately as TSTs and the previous years used as TRN.

Therefore, within each TRN, we performed 10-fold cross-

validation as follows. First, training data was divided into

10 subsets (folds), then, a value of MSE was computed for

each value of λ in a grid of 100 decreasing λ values (evenly

spaced in the logarithm scale and ranging from the maximum

possible to near zero, λmax = λ1 > λ2 > . . . > λ100 = 1 ×
10−7, where λmax = max

𝑗

{ |𝐆TST(𝑖),TRN(𝑗)|√
𝐆TRN(𝑗),TRN(𝑗)+θ̂

}
) for each fold

using the remaining nine folds for model training. The pro-

cedure was repeated for five different 10-fold partitions of

the training data. Finally, the optimal value was chosen as

the one that minimized the average MSE curve across the 5

× 10 = 50 folds.

2.9 Software

All analyses were performed in R v4.0.3 (R Core Team, 2020).

The genomic matrix was obtained using the ‘getG’ function

from the BGData package (Grueneberg & de los Campos,

2019), whereas variance components were estimated using

the function ‘fitBLUP’ from the SFSI package (Lopez-Cruz

et al., 2020). The regression coefficients for the SSI models

were computed with the function ‘SSI’ from the SFSI pack-

age. All analyses were implemented using high-performance

computing resources from Michigan State University (https://

icer.msu.edu/hpcc/hardware).

3 RESULTS

3.1 Genomic relationships and
heritabilities within TRNs

Out-diagonal genomic values (gij) in the G matrix corre-

sponding to the individuals in the prediction (i = 1, 2, . . . ,

nTST) and training (j = 1, 2, . . . , nTRN) sets TRN1–5 are

https://icer.msu.edu/hpcc/hardware
https://icer.msu.edu/hpcc/hardware
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provided in Supplemental Figures S1–S3 for the prediction

years TST = 2019, 2020, and 2021, respectively. These values

show similar distributions across all the training years form-

ing the TRN1–5 set with a no significant decay in the quantiles

but in the rank of the distribution with more years apart. In

general, all years in the data set (2014–2021) are intercon-

nected with each other. The degree of connectivity varies from

one extreme case where genotypes that are distant in time are

closely related (according to the coordinates on the top two

principal components, Supplemental Figure S4) to the other

extreme case where genotypes from two consecutive years

are distantly related (based on top principal components). The

proportion of variance explained by markers (ℎ̂2
𝑔
) was between

.20 and .38 and decreased as more previous cycles were added

to the TRN. For instance, when predicting the TST = 2021

cycle, the genomic heritability obtained with the 2020 cycle

(TRN1) was ℎ̂2
𝑔
= .34 and was reduced up to .21 when cycles

2016–2020 were combined (TRN1–5) in the TRN (Table 2).

Similar results were obtained for the prediction of TST= 2020

(ℎ̂2
𝑔
= .32 with TRN1 and .21 with TRN1–5) and TST = 2019

(ℎ̂2
𝑔
= .39 with TRN1 and .21 with TRN1–5).

3.2 Historical data adds accuracy for
prediction depending on TRN size

Adding k > 1 yr of previous cycles in the TRN (TRN1-k)

represented a growth of the training size of about k-folds as

opposed to using only one previous year as training (TRN1).

These increases in the training size were reflected in an

improved accuracy of the GBLUP models relative to the

model trained with TRN1 (Table 2). However, when the TRN

size was already large, sometimes the prediction accuracy

remained unchanged with increasing the number of cycles

in the TRN. For the prediction of TST = 2021 genotypes,

the accuracy was improved by 3 (with TRN1–2), 5 (with

TRN1–3), 14 (with TRN1–4), and up to 19% (i.e., ∼0.05 points

in the correlation scale) using the TRN1–5 (nTRN = 44,603)

when compared with the TRN1 (nTRN = 8,701) case. The

improvement in accuracy of TRN1–5 to TRN1 was of the same

magnitude for the TST = 2020 (15%) and TST = 2019 (17%)

predictions.

In all TST–TRN cases, the SSI showed a lower MSE than

the GBLUP (Supplemental Figure S5). However, in almost

all cases, the accuracy of the SSI was larger than that of the

GBLUP model (Table 2, Figure 1). The largest improvement

in accuracy was ∼0.02 (when predicting the TST= 2021 cycle

with TRN1–2 and TRN1–3) with a reduction in MSE of ∼0.01

(see Table 2). Similar to GBLUP, the accuracy of the SSI

models improved from increases in the TRN size.

Although yielding slightly more accurate predictions, in

general, the predicted values obtained with the SSI are very

similar to those of the GBLUP models (correlation between

F I G U R E 1 Prediction accuracy of the genomic best linear

unbiased prediction (GBLUP) and of the sparse selection index (SSI).

Each point represents a prediction case: a prediction (TST) cycle

(TST = 2019, 2020, or 2021, separated by color) using the five training

(TRN) sets (TRN1, TRN1–2, . . . , and TRN1–5). Points in gray represent

500 bootstrapped instances for each prediction case. The 45˚ line is

shown for comparison, where points above and below the line has a

larger and smaller, respectively, accuracy than the other model

0.90 and 0.94, see Figure 2). The correlation between pre-

dicted values obtained with the GBLUP model when using

one and two previous cycles (TRN1 and TRN1–2) is between

0.89 and 0.91 (Figure 2), which decayed when compared with

TRN1, as more previous cycles were included in the TRN

(between 0.85 and 0.87 with TRN1–3 and up to 0.80–0.82 with

TRN1–5). However, with the SSI model, the predictions with

TRN1 were very similar to those obtained with TRN1–2 (cor-

relation of 0.93–0.94) and are still in substantial agreement

as more previous cycles were added to the TRN relative to

when using TRN1 (correlation of 0.90–0.91 with TRN1–3 and

0.85–0.89 with TRN1–5). These results (Figure 2) suggest that

the SSI provides a more stable ranking of genotypes than the

GBLUP as the TRN becomes larger.

3.3 Inspection of the Hat matrix to assess
predictive contribution

In the SSI, the ith predicted subject (i = 1, 2, . . . , nTST)

receives prediction support from some but not all the train-

ing individuals. This number, 𝐹𝑇𝑆𝑇 (𝑖) =
∑𝑛𝑇𝑅𝑁

𝑗=1 1(𝑏𝑖𝑗 ≠ 0), is

given by the frequency of nonzero bij coefficients at each

row of the sparse Hat matrix. Figure 3 shows the distribution

of the FTST(i) values for each TST (TST = 2019, 2020, and

2021) using the last 5 yr (TRN1–5) to train the model. The

TRN1–5 is composed of >40,000 individuals that within the

GBLUP model provide prediction to all predicted genotypes

(i.e., FTST(i) = nTRN for all i). The SSI formed the prediction of

TST= 2021 genotypes using between 1,458<FTST(i) < 8,349
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F I G U R E 2 Correlation between predicted values obtained by each model (genomic best linear unbiased prediction [GBLUP] and of the sparse

selection index [SSI]) and training (TRN) set (TRN1, TRN1–2, . . . , and TRN1–5). Each panel represents a prediction (TST) cycle (TST = 2019, 2020,

or 2021)

F I G U R E 3 Frequency of the number of supporting training (TRN) points for each individual in the prediction (TST) cycle (TST = 2019, 2020,

or 2021), 𝐹𝑇𝑆𝑇 (𝑖) =
∑𝑛𝑇𝑅𝑁

𝑗=1 1(𝑏𝑖𝑗 ≠ 0), where 1(⋅) is the indicator function that returns the value 1 if 𝑏𝑖𝑗 ≠ 0 and 0 otherwise (i.e., number of nonzero

values at each row of the sparse Hat matrix). The TRN set was composed of the last five cycles before the TST set (TRN1-5). Vertical dotted lines

represent the mean value

training genotypes, with an average of 𝐹TST = 5,499 training

elements. That is, the prediction of the individuals in TST =
2021 is provided by, on average, only 12% of the total nTRN

= 44,603 elements available in TRN1–5 (see the top panel in

Figure 3). Similarly, the TST = 2020 and TST = 2019 predic-

tions of genotypes were performed with 𝐹𝑇𝑆𝑇 =5,874 (out of

nTRN = 44,836) and 𝐹TST = 5,585 (out of nTRN = 43,314)

training individuals, respectively.

Upon inspecting the columns of the sparse Hat matrix,

𝐹TRN(𝑗) =
∑𝑛TST

𝑖=1 1(𝑏𝑖𝑗 ≠ 0) gives the frequency of nonzero bij
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F I G U R E 4 Frequency of the number of supported points in the prediction (TST) cycle (TST = 2019, 2020, or 2021) of each training (TRN)

individual, 𝐹TRN(𝑗) =
∑𝑛TST

𝑖=1 1(𝑏𝑖𝑗 ≠ 0), where 1(⋅) is the indicator function that returns the value 1 if 𝑏𝑖𝑗 ≠ 0 and 0 otherwise (i.e., number of nonzero

values at each column of the sparse Hat matrix). The TRN set was composed of the last five cycles before the TST set (TRN1–5). Vertical dotted lines

represent the mean value

coefficients at each column of the matrix. These FTRN(j) val-

ues represent the number of predicted individuals to which a

single training subject j provides prediction. Figure 4 shows

the distribution of the FTRN(j) values for each TST (TST =
2019, 2020, and 2021) using the last 5 yr (TRN1–5) as a TRN.

Training individuals support the prediction of only some indi-

viduals in the TST. For instance, in the prediction of the nTST

= 7,893 genotypes in TST = 2021, training individuals were

supporting the prediction of a reduced number of subjects as

low as FTRN(j) = 13 and up to FTRN(j) = 1,955 genotypes.

On average, individuals in TRN1–5 supported the prediction

for only 𝐹TRN = 973 individuals in TST = 2021 (see the top

panel in Figure 4). In the TST = 2020 and TST = 2019 pre-

diction cycles, individuals in TRN1–5 provided predictions for

only 𝐹TRN = 1,140 (out of nTST = 8,701) and to 𝐹TRN = 1,151

(out of nTST = 8,928) predicted genotypes, respectively.

3.4 Trimming the TRN supports
optimization of accuracy

Zeroing out complete columns of the sparse Hat matrix,

whose value FTRN(j) was smaller than a certain threshold,

resulted in a reduction of the total TRN. In the prediction of

TST = 2021 genotypes, the accuracy of the SSI obtained with

the whole TRN1–5 (nTRN = 44,603) was 0.315 with an MSE of

0.326. Trimming the whole TRN1–5 data, by discarding indi-

viduals whose value FTRN(j) < Q0.35, resulted in a TSSI0.65

using a smaller TRN (nTRN = 29,032) still containing individ-

uals from all training cycles at comparable frequencies (6,487

subjects from cycle TRN = 2020; 5,016 from TRN = 2019;

4,244 from TRN = 2018; 6,774 from TRN = 2017; and 6,511

from TRN = 2016, see Table 3). This reduced TRN, which

represented 65% of the total TRN1–5, yielded the same pre-

diction accuracy (∼0.316) of the SSI trained with the whole

TRN1–5 but with a minimized MSE (0.317, see Figure 5).

When dropping almost half of the TRN1–5 data (FTRN(j) <

Q0.45, nTRN = 24,580), the resulting index TSSI0.55 yielded

the same accuracy (∼0.306) but with a reduced MSE (0.318)

relative to the GBLUP (accuracy = 0.307, MSE = 0.329)

trained with all data TRN1–5.

In the case of the TST = 2020 prediction, a TSSI0.75 (i.e.,

dropping the quantile 25% from TRN1–5) yielded the same

accuracy (0.365) and a slightly smaller MSE (0.287) than

the GBLUP (MSE = 0.292) trained with TRN1–5 (Table 2,

Figure 5). Although no benefit was observed in terms of accu-

racy in the prediction of TST= 2019 for the proposed trimmed

SSI approach, a lower MSE (<0.391) was observed when we
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F I G U R E 5 Prediction accuracy and mean square error (MSE; black lines) of the TSSI1–p model for each prediction (TST) cycle (TST = 2019,

2020, or 2021). The predictions are obtained by using a reduced training (TRN) data TRN1–5 (the last five previous cycles to the TST). Individuals in

TRN1–5 whose frequency FTRN( j) was smaller than the quantile Qp (p = .05, .10, .15, . . . , .75, and .80) were dropped from the sparse Hat matrix; and

an index TSSI1–p was calculated with the trimmed sparse Hat matrix. The index TSSI1.0 at the right-most side of the plots correspond to the original

sparse selection index fitted with all TRN1–5 data. The top x axis shows the reduced TRN set size associated to each TSSI1–p model. Horizontal

colored lines represent the accuracy and MSE of the GBLUP model fitted with each TRN set (TRN1 and cumulated training TRN1-k, k = 2, 3, 4, or 5)

drop up to 30% of the training data compared with the GBLUP

trained with TRN1–5 (MSE = 0.392) or TRN1–4 (MSE =
0.391; Table 2, Figure 5). In general, the observed trends were

not completely similar for the three prediction cycles.

4 DISCUSSION

4.1 The complexity of factors involved in
genomic-based predictions

The complexity of the genomic-enabled prediction is evi-

dent and shown in terms of several factors including sample

size, genotype × environment interaction, trait heritabil-

ity, LD between markers and quantitative trait loci, family

relationships between individuals in training and prediction

groups, and diversity within the TRN (Daetwyler et al., 2008;

Heffner et al., 2009; Lorenzana & Bernardo, 2009; Combs &

Bernardo, 2013; Crossa et al., 2017).

As pointed out by Habier et al. (2007), the relationship

between the several sources of accuracy produced by the

above-mentioned factors is not easy to untangle and difficult

to study in isolation. For example, increasing marker density

can increase the proportion of the trait variance explained

by GBLUP models but requires markers in LD with quan-

titative trait loci in both TRNs and TSTs. Lopez-Cruz et al.

(2021) showed that accuracy increased when increasing the

training size by adding only a few individuals in the same

cycle; however, the genomic heritability remained unchanged.

This suggests a sizable contribution of closely related individ-

uals (i.e., individuals in the same cycle) to increase prediction

accuracy. Lopez-Cruz et al. (2021) pointed out that these

results agree with Habier et al. (2007) in the sense that the

accuracy of GBLUP models mostly results from the genetic

relationships between individuals in training and prediction

groups rather than the existing LD.

Increasingly heterogeneous populations with a high degree

of family structure can make genetic effects vary across sub-

groups (de los Campos et al., 2015b). Therefore, the classical

GBLUP model that assumes homogeneous genetic effects

may be less able to capture overall genetic patterns, thus

reducing the proportion of the additive variance explained

by markers. In our study, increasing the training size (and

therefore, increasing genetic diversity and heterogeneity) by

including more years in the TRN was reflected in an improve-

ment in prediction accuracy; however, this also implied a
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reduction of the genomic heritability (Table 2). The predic-

tion accuracy depends on the interplaying of the narrow-sense

heritability (proportion of the trait variance explained by addi-

tive genetic effects) with the accuracy of the estimated genetic

effects (proportion of additive variance explained by markers)

(e.g., Goddard, 2009; de los Campos et al., 2015a). There-

fore, our results suggest that the gains in the GBLUP accuracy

resulted predominately from using a large TRN (potentially

including closely related individuals to the ones to be pre-

dicted) with a broad genetic basis rather than in increasing

additive variance captured by markers (i.e., LD). These obser-

vations are also in agreement with findings in Makowsky et al.

(2011) and Habier et al. (2007).

4.2 Influence of assessing year × genotype
interaction

Because of the large number of lines evaluated each year in

this study, GBLUP models including genotype × environ-

ment interaction were not deployed. When using actual data

from a breeding program, most of the breeding lines evalu-

ated in one year are not repeated the following year and thus

interaction terms between genetic (marker) information and

environments can only be assessed by the link between indi-

viduals established by the markers. Thus, it is possible to

borrow information for predicting unobserved lines in new

environments by using markers and correlated environmental

information. However, it must be accepted that some degree of

confounding information between genomic and environments

exist in large plant breeding trials when not all lines are tested

in all environments and the degree of overlapping of lines

across years (or environments) is low. In the Pérez-Rodríguez

et al. (2017) study, when using a large number of CIM-

MYT lines tested in multienvironment trials (n = 58,798),

the single-step genomic and pedigree genotype× environment

models yielded 24–66% accuracy gains over models that did

not account for genotype × environment interactions. Pérez-

Rodríguez et al. (2020) found that under the statistical reaction

norm model including year × genotype interactions (Jarquín

et al., 2014), the prediction accuracy based on markers and

pedigree was 0.437 for TST = 2018 when training the mod-

els using lines from 2014–2017 and was higher that when

using either markers or pedigree alone. Using the same mod-

els, Dreisigacker et al. (2021) obtained the same prediction

accuracy (0.340) as the one obtained in this study for TST

= 2019 using 2014–2018 for model training. In general, the

authors found slightly higher or similar prediction accura-

cies than those obtained in previous cycles (years) and those

obtained in this study. However, in our study, we did not assess

year × genotype interaction and did not include the pedigree

information; therefore, the prediction of genotypes relied only

on their marker-derived genetic relatedness with a large num-

ber of other genotypes evaluated in a series of one or more

previous years.

4.3 The impact of individual’s distance in
TRN and TST on prediction accuracy

Rincent et al. (2012) highlighted that prediction accuracy is

increased when the TRN includes individuals distantly related

to each other and closely related to those in the TST. Results

from this study clearly show that adding more lines from pre-

vious years increases the prediction accuracies (Table 2) using

the GBLUP and SSI methods. The SSI model demonstrated

that a substantial number of historical lines (representing 5 yr

in this study) contributed to the prediction of individuals in

the prediction year. These results indicate that not all histori-

cal breeding lines are increasingly distantly related lines to the

current prediction year (Supplemental Figures S1–S4). This

can be due to identity by state or the fact that key parents

are used in breeding for several years. Because of constant

artificial selection, favorable linkage blocks in the genome

can be preserved and inherited for several cycles. The SSI

showed some superiority over the GBLUP in terms of pre-

diction accuracy by finding the most predictive individuals

in the TRN. In general, the contribution to the prediction

was not greatly provided by the most recent years, instead

the SSI derived the predictions from comparable contribu-

tions from all years in the TRN (see Supplemental Figures

S6–S8 for plots of genomic relationships vs. regression

coefficients).

The CIMMYT wheat data used in this study, as well as

those used by Pérez-Rodríguez et al. (2017, 2020), Howard

et al. (2019), and Dreisigacker et al. (2021), comprised a

large number of small-sized families at F7 and F8 breeding

generations and are part of the routine product development

pipeline of the CIMMYT spring wheat bread breeding pro-

gram. The size and the degree of connectivity of the families

connecting training and prediction populations vary across

years leading to a very complex admixture between fam-

ilies and years (Supplemental Figure S4). Therefore, lines

from these small families bred previously can be connected

through pedigree with some but not all lines in the more recent

cycles, thus increasing the prediction accuracy in the predic-

tion cycle. However, families that are not related to others

represent superfluous genetic material for prediction. In this

study, the TSSI with a reduced TRN representing 65% of

the total TRN1–5 data yielded the same prediction accuracy

(∼0.316) as the SSI using the total TRN1–5 (with a minimized

MSE). The TSSI0.55 (formed by dropping almost half of the

TRN1–5 data) also yielded the same accuracy (∼0.306) as that

of the GBLUP trained with all data TRN1–5 (∼0.307). This

reduced TRN was still formed with individuals from all gen-

erations equally represented, demonstrating that in the total
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TRN1–5 data, there are individuals (and families) developed 5

yr ago that are still genetically related to those in the TST. It

also demonstrated that a great deal of individuals in the TRN

do not substantially contribute to the prediction of those in

the TST, thus representing redundant information for training.

Choosing the most informative lines prescinding of super-

fluous information in the TRN with the TSSI model can be

enough to reach the same prediction accuracy that is obtained

using all training data.

Interestingly, the results of this study did not agree with

those from Dawson et al. (2013), where, using CIMMYT his-

torical wheat data over 17 yr, the accuracy of year-to-year

grain yield predictions using TRNs comprising all previous

years was approximately the same as when considering only

the previous 3 yr. However, the authors obtained these results

by sequentially training the model using all data from one or

more previous years; with the SSI, all available historical data

can be used for model training and let it to automatically per-

form selection of some but not all training individuals within

each year.

In summary, more genetically related individuals in the

training and TSTs are detected by SSI methods even when

they are not closely related in time. The SSI methodology

considers both complexities: (a) the relationships between the

genotype in the TST and each genotype in the TRN as well as

(b) the relationships between the training genotypes. There-

fore, even with a very large TRN, the SSI method should

be still able to extract information from those nonredundant

individuals more genetically related to those on the TST.

The results of the SSI will be different from what can be

obtained by selecting training individuals based on thresh-

olding genomic relationships (Lopez-Cruz & de los Campos,

2021). In our results, training individuals with a sizable

genomic relationship with testing individuals are less likely

to be included in the optimal TRN (i.e., bij ≠ 0) if they are

related (i.e., have a relatively high genomic R2 coefficient)

with other individuals in the TRN (Supplemental Figures

S6–S8). Results from this study show that the use of all avail-

able multigeneration information together does not decrease

the prediction accuracy of the standard GBLUP. However,

as demonstrated by Lopez-Cruz and de los Campos (2021),

the SSI provided higher gains in accuracy when compared

with the GBLUP, as more years were included in the TRN.

Although the amount of additive variance captured by mark-

ers decreased, and thus, expecting a reduction of the genomic

prediction accuracy, using a very diverse and large enough

TRN appeared to be a more influential factor that caused the

accuracy to increase. The SSI is useful for TRN optimization

to extract core information for prediction with large multigen-

eration data. Genomic relationships may be complemented

with pedigree information to account for polygenic variance

not captured by markers, and therefore, potentially benefit the

prediction accuracy (Velazco et al., 2019).

5 CONCLUSIONS

This study demonstrates that the SSI optimizes prediction

accuracy when the training data has complex relationship

patterns arising from multiple-year breeding data. In this con-

text, differences in allele frequencies and in LD patterns may

make genetic effects heterogenous across families and sub-

families, thus making the standard GBLUP suboptimal. With

the large multiple-year data used in this study, comprised of

wheat grain yield of 68,836 lines generated across 8 yr, small

improvements of up to ∼0.05 in the GBLUP accuracy were

achieved when using 5 yr of data compared with when using

only one previous year. The SSI showed a slight gain over the

GBLUP accuracy with the advantage that trimming the SSI

allows for these accuracies to be achieved with a minimized

MSE using only a portion of the total TRN.

A C K N O W L E D G M E N T S
We thank all CIMMYT scientists, field workers, and lab assis-

tants who collected the data used in this study. Open Access

fees are received from the Bill and Melinda Gates Foundation.

We acknowledge the financial support provided by the Bill

and Melinda Gates Foundation [INV-003439 BMGF/FCDO

Accelerating Genetic Gains in Maize and Wheat for Improved

Livelihoods (AGG)] as well as USAID projects [Amend. No.

9 MTO 069033, USAID-CIMMYT Wheat/AGGMW, AGG-

Maize Supplementary Project, AGG (Stress Tolerant Maize

for Africa)] that generated the CIMMYT data analyzed in

this study. We are also thankful for the financial support

provided by the Foundation for Research Levy on Agri-

cultural Products (F.F.L.) and the Agricultural Agreement

Research Fund (J.A.) in Norway through NFR grant 267806,

the CIMMYT CRP-WHEAT, and the USDA National Insti-

tute of Food and Agriculture grants 2020-67013-30904 and

2018-67015-27957 to DER and Hatch project 1010469.

AU T H O R S C O N T R I B U T I O N
Marco Lopez-Cruz: Formal analysis, Investigation, Method-

ology, Software, Validation, Writing – original draft, Writing

– review & editing. Susanne Dreisigacker: Conceptualiza-

tion, Writing – original draft. Leonardo Crespo-Herrera:

Resources, Writing – review & editing. Alison R. Bentley:

Funding acquisition, Resources, Writing – review & editing.

Ravi Singh: Resources, Writing – review & editing. Jesse

Poland: Data curation, Resources, Writing – review & editing.

Sandesh Shrestha: Data curation, Resources, Writing – review

& editing. Julio Huerta-Espino: Data curation, Resources.

Velu Govindan: Resources, Writing – review & editing.

Philomin Juliana: Data curation, Resources, Writing – review

& editing. Suchismita Mondal: Data curation, Resources.

Paulino Pérez-Rodríguez: Conceptualization, Formal analy-

sis, Writing – original draft. Jose Crossa: Conceptualization,

Supervision, Writing – original draft.



14 of 15 LOPEZ-CRUZ ET AL.The Plant Genome

C O N F L I C T O F I N T E R E S T
The authors declare that there is no conflict of interest.

D AT A AVA I L A B I L I T Y S T AT E M E N T
Phenotypic and genotype data used in this study are available

online (https://hdl.handle.net/11529/10548635).

O R C I D
Marco Lopez-Cruz https://orcid.org/0000-0002-2548-

1766

Susanne Dreisigacker https://orcid.org/0000-0002-3546-

5989

Alison R Bentley https://orcid.org/0000-0001-5519-4357

Jesse Poland https://orcid.org/0000-0002-7856-1399

Jose Crossa https://orcid.org/0000-0001-9429-5855

R E F E R E N C E S
Akdemir, D., & Isidro-Sanchez, J. (2019). Design of training populations

for selective phenotyping in genomic prediction. Science Reports, 9,

1446. https://doi.org/10.1038/s41598-018-38081-6

Akdemir, D., Sanchez, J. I., & Jannink, J.-L. (2015). Optimization

of genomic selection training populations with a genetic algo-

rithm. Genetics Selection Evolution., 47, 380. https://doi.org/10.1186/

s12711-015-0116-6

Combs, E., & Bernardo, R. (2013). Accuracy of genomewide selec-

tion for different traits with constant population size, heritability, and

number of markers. The Plant Genome, 6, plantgenome2012.11.0030.

https://doi.org/10.3835/plantgenome2012.11.0030

Crespo-Herrera, L. A., Crossa, J., Huerta-Espino, J., Mondal, S., Velu,

G., Juliana, P., Vargas, M., Pérez-Rodríguez, P., Joshi, A. K., Braun,

H. J., & Singh, R. P. (2021). Target population of environments for

wheat breeding in India: Definition, prediction and genetic gains.

Frontiers in Plant Science, 12, 638520. https://doi.org/10.3389/fpls.

2021.638520

Crossa, J., Martini, J. W. R., Gianola, D., Pérez-Rodríguez, P., Jarquin,

D., Juliana, P., Montesinos-López, O., & Cuevas, J. (2019). Deep ker-

nel and deep learning for genome-based prediction of single traits

in multienvironment breeding trials. Frontiers in Genetics, 10, 1168.

https://doi.org/10.3389/fgene.2019.01168

Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O.,

Jarquín, D., de los Campos, G., Burgueño, J., González-Camacho,

J. M., Pérez-Elizalde, S., Beyene, Y., Dreisigacker, S., Singh, R.,

Zhang, X., Gowda, M., Roorkiwal, M., Rutkoski, J., & Varshney, R.

K. (2017). Genomic selection in plant breeding: Methods, models,

and perspectives. Trends in Plant Science, 22, 961–975. https://doi.

org/10.1016/j.tplants.2017.08.011

Daetwyler, H. D., Villanueva, B., & Woolliams, J. A. (2008). Accu-

racy of predicting the genetic risk of disease using a genome-wide

approach. PLoS One, 3, e3395. https://doi.org/10.1371/journal.pone.

0003395

Dawson, J. C., Endelman, J. B., Heslot, N., Crossa, J., Poland, J.,

Dreisigacker, S., Manès, Y., Sorrells, M. E., & Jannink, J.-L. (2013).

The use of unbalanced historical data for genomic selection in an

international wheat breeding program. Field Crops Research, 154,

12–22. https://doi.org/10.1016/j.fcr.2013.07.020

de los Campos, G., Gianola, D., & Rosa, G. J. (2009). Reproducing kernel

Hilbert spaces regression: A general framework for genetic evalua-

tion. Journal of Animal Science, 87, 1883–1887. https://doi.org/10.

2527/jas.2008-1259

de los Campos, G., Sorensen, D., & Gianola, D. (2015a). Genomic heri-

tability: What is it? PLoS Genetics, 11, e1005048. https://doi.org/10.

1371/journal.pgen.1005048

de los Campos, G., Vazquez, A. I., Fernando, R., Klimentidis, Y. C., &

Sorensen, D. (2013). Prediction of complex human traits using the

genomic best linear unbiased predictor. PLoS Genetics, 9, e1003608.

https://doi.org/10.1371/journal.pgen.1003608

de los Campos, G., Veturi, Y., Vazquez, A. I., Lehermeier, C., &

Pérez-Rodríguez, P. (2015b). Incorporating genetic heterogeneity in

whole-genome regressions using interactions. Journal of Agricul-
tural, Biological, and Environmental Statistics, 20, 467–490. https://

doi.org/10.1007/s13253-015-0222-5

Dreisigacker, S., Crossa, J., Pérez-Rodríguez, P., Montesinos-Lopez,

O. A., Rosyara, U., Juliana, P., Mondal, S., Crespo-Herrera, L.,

Govindan, V., Singh, R. P., & Braun, H.-J. (2021). Implementation

of genomic selection in the CIMMYT global wheat program, find-

ings from the past 10 years. Crop Breeding, Genetics and Genomics,

3, e210005. https://doi.org/10.20900/cbgg20210005

Gianola, D., Fernando, R. L., & Stella, A. (2006). Genomic-assisted

prediction of genetic value with semiparametric procedures.

Genetics, 173, 1761–1776. https://doi.org/10.1534/genetics.105.

049510

Gianola, D., Morota, G., & Crossa, J. (2014). Genome-enabled Predic-
tion of Complex Traits with Kernel Methods: What Have We Learned?
Paper 212. Paper presented at 10th World Congress of Genetics

Applied to Livestock Production, Vancouver, BC, Canada, August

17–22, 2014.

Gianola, D., Okut, H., Weigel, K. A., & Rosa, G. J. M. (2011). Pre-

dicting complex quantitative traits with Bayesian neural networks:

A case study with Jersey cows and wheat. BMC Genetics, 12, 87.

https://doi.org/10.1186/1471-2156-12-87

Glaubitz, J. C., Casstevens, T. M., Lu, F., Harriman, J., Elshire, R. J.,

Sun, Q., & Buckler, E. S. (2014). TASSEL-GBS: A high capacity

genotyping by sequencing analysis pipeline. PLoS One, 9, e90346.

https://doi.org/10.1371/journal.pone.0090346

Goddard, M. (2009). Genomic selection: Prediction of accuracy and

maximisation of long term response. Genetica, 136, 245–257. https://

doi.org/10.1007/s10709-008-9308-0

Grueneberg, A., & de los Campos, G. (2019). BGData - A suite of R

packages for genomic analysis with big data. G3 Genes, Genomes,
Genetics, 9, 1377–1383. https://doi.org/10.1534/g3.119.400018

Habier, D., Fernando, R. L., & Dekkers, J. C. M. (2007). The impact

of genetic relationship information on genome-assisted breeding val-

ues. Genetics, 177, 2389–2397. https://doi.org/10.1534/genetics.107.

081190

Heffner, E. L., Sorrells, M. E., & Jannink, J.-L. (2009). Genomic selec-

tion for crop improvement. Crop Science, 49, 1–12. https://doi.org/

10.2135/cropsci2008.08.0512

Howard, R., Gianola, D., Montesinos-López, O., Juliana, P., Singh, R.,

Poland, J., Shrestha, S., Pérez-Rodríguez, P., Crossa, J., & Jarquín,

D. (2019). Joint use of genome, pedigree, and their interaction with

environment for predicting the performance of wheat lines in new

environments. G3 Genes, Genomes, Genetics, 9, 2925–2934. https://

doi.org/10.1534/g3.119.400508

Jarquín, D., Crossa, J., Lacaze, X., Du Cheyron, P., Daucourt, J.,

Lorgeou, J., Piraux, F., Guerreiro, L., Pérez, P., Calus, M., Burgueño,

J., & de los Campos, G. (2014). A reaction norm model for genomic

https://hdl.handle.net/11529/10548635
https://orcid.org/0000-0002-2548-1766
https://orcid.org/0000-0002-2548-1766
https://orcid.org/0000-0002-2548-1766
https://orcid.org/0000-0002-3546-5989
https://orcid.org/0000-0002-3546-5989
https://orcid.org/0000-0002-3546-5989
https://orcid.org/0000-0001-5519-4357
https://orcid.org/0000-0001-5519-4357
https://orcid.org/0000-0002-7856-1399
https://orcid.org/0000-0002-7856-1399
https://orcid.org/0000-0001-9429-5855
https://orcid.org/0000-0001-9429-5855
https://doi.org/10.1038/s41598-018-38081-6
https://doi.org/10.1186/s12711-015-0116-6
https://doi.org/10.1186/s12711-015-0116-6
https://doi.org/10.3835/plantgenome2012.11.0030
https://doi.org/10.3389/fpls.2021.638520
https://doi.org/10.3389/fpls.2021.638520
https://doi.org/10.3389/fgene.2019.01168
https://doi.org/10.1016/j.tplants.2017.08.011
https://doi.org/10.1016/j.tplants.2017.08.011
https://doi.org/10.1371/journal.pone.0003395
https://doi.org/10.1371/journal.pone.0003395
https://doi.org/10.1016/j.fcr.2013.07.020
https://doi.org/10.2527/jas.2008-1259
https://doi.org/10.2527/jas.2008-1259
https://doi.org/10.1371/journal.pgen.1005048
https://doi.org/10.1371/journal.pgen.1005048
https://doi.org/10.1371/journal.pgen.1003608
https://doi.org/10.1007/s13253-015-0222-5
https://doi.org/10.1007/s13253-015-0222-5
https://doi.org/10.20900/cbgg20210005
https://doi.org/10.1534/genetics.105.049510
https://doi.org/10.1534/genetics.105.049510
https://doi.org/10.1186/1471-2156-12-87
https://doi.org/10.1371/journal.pone.0090346
https://doi.org/10.1007/s10709-008-9308-0
https://doi.org/10.1007/s10709-008-9308-0
https://doi.org/10.1534/g3.119.400018
https://doi.org/10.1534/genetics.107.081190
https://doi.org/10.1534/genetics.107.081190
https://doi.org/10.2135/cropsci2008.08.0512
https://doi.org/10.2135/cropsci2008.08.0512
https://doi.org/10.1534/g3.119.400508
https://doi.org/10.1534/g3.119.400508


LOPEZ-CRUZ ET AL. 15 of 15The Plant Genome

selection using high-dimensional genomic and environmental data.

Theoretical and Applied Genetics, 127, 595–607. https://doi.org/10.

1007/s00122-013-2243-1

Lopez-Cruz, M., Beyene, Y., Gowda, M., Crossa, J., Pérez-Rodríguez,

P., & de los Campos, G. (2021). Multi-generation genomic prediction

of maize yield using parametric and non-parametric sparse selec-

tion indices. Heredity, 127, 423–432. https://doi.org/10.1038/s41437-

021-00474-1

Lopez-Cruz, M., Crossa, J., Bonnett, D., Dreisigacker, S., Poland, J.,

Jannink, J.-L., Singh, R. P., Autrique, E., & de los Campos, G.

(2015). Increased prediction accuracy in wheat breeding trials using

a marker × environment interaction genomic selection model. G3
Genes, Genomes, Genetics, 5, 569–582. https://doi.org/10.1534/g3.

114.016097

Lopez-Cruz, M., & de los Campos, G. (2021). Optimal breeding-value

prediction using a sparse selection index. Genetics, 218, iyab030.

https://doi.org/10.1093/genetics/iyab030

Lopez-Cruz, M., Olson, E., Rovere, G., Crossa, J., Dreisigacker, S.,

Suchismita, M., Singh, R., & Campos, G. L. (2020). Regularized

selection indices for breeding value prediction using hyper-spectral

image data. Science Reports, 10, 8195. https://doi.org/10.1038/

s41598-020-65011-2

Lorenz, A. J., & Smith, K. P. (2015). Adding genetically distant indi-

viduals to training populations reduces genomic prediction accuracy

in Barley. Crop Science, 55, 2657–2667. https://doi.org/10.2135/

cropsci2014.12.0827

Lorenzana, R. E., & Bernardo, R. (2009). Accuracy of genotypic value

predictions for marker-based selection in biparental plant populations.

Theoretical and Applied Genetics, 120, 151–161. https://doi.org/10.

1007/s00122-009-1166-3

Makowsky, R., Pajewski, N. M., Klimentidis, Y. C., Vazquez, A. I.,

Duarte, C. W., Allison, D. B., & de los Campos, G. (2011). Beyond

missing heritability: Prediction of complex traits. PLoS Genetics, 7,

e1002051. https://doi.org/10.1371/journal.pgen.1002051

Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Pre-

diction of total genetic value using genome-wide dense marker

maps. Genetics, 157, 1819–1829. https://doi.org/10.1093/genetics/

157.4.1819

Morota, G., & Gianola, D. (2014). Kernel-based whole-genome pre-

diction of complex traits: A review. Frontiers in Genetics, 5, 363.

https://doi.org/10.3389/fgene.2014.00363

Morota, G., Koyama, M., Rosa, G. J. M., Weigel, K. A., & Gianola, D.

(2013). Predicting complex traits using a diffusion kernel on genetic

markers with an application to dairy cattle and wheat data. Genetics
Selection Evolution., 45, 17. https://doi.org/10.1186/1297-9686-45-

17

Pérez-Rodríguez, P., Burgueño, J., Montesinos-López, O., Singh, R. P.,

Juliana, P., Mondal, S., & Crossa, J. (2020). Prediction with big data in

the genomic and high-throughput phenotyping era: A case study with

wheat data. In M. S. Kang (Ed.), Quantitative genetics, genomics and
plant breeding (pp. 213–226). CAB International. https://doi.org/10.

1079/9781789240214.0213

Pérez-Rodríguez, P., Crossa, J., Rutkoski, J., Poland, J., Singh,

R., Legarra, A., Autrique, E., Campos, G. L., Burgueño, J., &

Dreisigacker, S. (2017). Single-step genomic and pedigree genotype

× environment interaction models for predicting wheat lines in int-

ernational environments. The Plant Genome, 10, plantgenome

2016.09.0089. https://doi.org/10.3835/plantgenome2016.09.0089

Poland, J., Endelman, J., Dawson, J., Rutkoski, J., Wu, S., Manes, Y.,

Dreisigacker, S., Crossa, J., Sánchez-Villeda, H., Sorrells, M., &

Jannink, J.-L. (2012). Genomic selection in wheat breeding using

genotyping-by-sequencing. The Plant Genome, 5. https://doi.org/10.

3835/plantgenome2012.06.0006

Pszczola, M., & Calus, M. P. L. (2016). Updating the refer-

ence population to achieve constant genomic prediction reliability

across generations. Animal, 10, 1018–1024. https://doi.org/10.1017/

S1751731115002785

R Core Team. (2020). R statistical software version 4.0.3. R Foundation

for Statistical Computing.

Rincent, R., Nicolas, S., Altmann, T., Brunel, D., Revilla, P., Melchinger,

A., Bauer, E., Schoen, C. C., Meyer, N., Giauffret, C., Bauland, C.,

Jamin, P., Laborde, J., Monod, H., Flament, P., Charcosset, A., &

Moreau, L. (2012). Maximizing the reliability of genomic selection

by optimizing the calibration set of reference individuals: Compari-

son of methods in two diverse groups of maize inbreds (Zea mays L.).

Genetics, 192, 715–728. https://doi.org/10.1534/genetics.112.141473

VanRaden, P. M. (2007). Genomic measures of relationship and

inbreeding. Interbull Bulletin, 37, 33–36.

VanRaden, P. M. (2008). Efficient methods to compute genomic predic-

tions. Journal of Dairy Science, 91, 4414–4423. https://doi.org/10.

3168/jds.2007-0980

Velazco, J. G., Malosetti, M., Hunt, C. H., Mace, E. S., Jordan, D.

R., & van Eeuwijk, F. A. (2019). Combining pedigree and genomic

information to improve prediction quality: An example in sorghum.

Theoretical and Applied Genetics, 132, 2055–2067. https://doi.org/

10.1007/s00122-019-03337-w

S U P P O R T I N G I N F O R M AT I O N
Additional supporting information can be found online in the

Supporting Information section at the end of this article.

How to cite this article: Lopez-Cruz, M.,

Dreisigacker, S., Crespo-Herrera, L., Bentley, A. R.,

Singh, R., Poland, J., Shrestha, S., Huerta-Espino, J.,

Velu, G., Juliana, P., Mondal, S., Pérez-Rodríguez, P.,

& Crossa, J. (2022). Sparse kernel models provide

optimization of training set design for genomic

prediction in multiyear wheat breeding data. The Plant
Genome, e20254. https://doi.org/10.1002/tpg2.20254

https://doi.org/10.1007/s00122-013-2243-1
https://doi.org/10.1007/s00122-013-2243-1
https://doi.org/10.1038/s41437-021-00474-1
https://doi.org/10.1038/s41437-021-00474-1
https://doi.org/10.1534/g3.114.016097
https://doi.org/10.1534/g3.114.016097
https://doi.org/10.1093/genetics/iyab030
https://doi.org/10.1038/s41598-020-65011-2
https://doi.org/10.1038/s41598-020-65011-2
https://doi.org/10.2135/cropsci2014.12.0827
https://doi.org/10.2135/cropsci2014.12.0827
https://doi.org/10.1007/s00122-009-1166-3
https://doi.org/10.1007/s00122-009-1166-3
https://doi.org/10.1371/journal.pgen.1002051
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.3389/fgene.2014.00363
https://doi.org/10.1186/1297-9686-45-17
https://doi.org/10.1186/1297-9686-45-17
https://doi.org/10.1079/9781789240214.0213
https://doi.org/10.1079/9781789240214.0213
https://doi.org/10.3835/plantgenome2016.09.0089
https://doi.org/10.3835/plantgenome2012.06.0006
https://doi.org/10.3835/plantgenome2012.06.0006
https://doi.org/10.1017/S1751731115002785
https://doi.org/10.1017/S1751731115002785
https://doi.org/10.1534/genetics.112.141473
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.1007/s00122-019-03337-w
https://doi.org/10.1007/s00122-019-03337-w
https://doi.org/10.1002/tpg2.20254

	Sparse kernel models provide optimization of training set design for genomic prediction in multiyear wheat breeding data
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | Phenotypic data
	2.2 | Genotype data
	2.3 | Genomic prediction models and methods
	2.4 | GBLUP model
	2.5 | Sparse selection index
	2.6 | Trimmed sparse selection index
	2.7 | Training and TSTs
	2.8 | Optimizing the penalization parameter
	2.9 | Software

	3 | RESULTS
	3.1 | Genomic relationships and heritabilities within TRNs
	3.2 | Historical data adds accuracy for prediction depending on TRN size
	3.3 | Inspection of the Hat matrix to assess predictive contribution
	3.4 | Trimming the TRN supports optimization of accuracy

	4 | DISCUSSION
	4.1 | The complexity of factors involved in genomic-based predictions
	4.2 | Influence of assessing year × genotype interaction
	4.3 | The impact of individual’s distance in TRN and TST on prediction accuracy

	5 | CONCLUSIONS
	ACKNOWLEDGMENTS
	AUTHORS CONTRIBUTION
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	SUPPORTING INFORMATION


