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ABSTRACT 18 

Linking high-throughput environmental data (enviromics) to genomic prediction (GP) is 19 

a cost-effective strategy for increasing selection intensity under genotype-by-20 

environment interactions (G×E). This study developed a data-driven approach based on 21 

Environment-Phenotype Associations (EPA) aimed at recycling important G×E 22 

information from historical breeding data. EPA was developed in two applications: (1) 23 

scanning a secondary source of genetic variation, weighted from the shared reaction-24 

norms of past-evaluated genotypes; (2) pinpointing weights of the similarity among 25 

trial-sites (locations), given the historical impact of each envirotyping data variable for a 26 
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given site. These results were then used as a dimensionality reduction strategy, 1 

integrating historical data to feed multi-environment GP models, which led to 2 

development of four new G×E kernels considering genomics, enviromics and EPA 3 

outcomes. The wheat trial data used included 36 locations, eight years and three target 4 

populations of environments (TPE) in India. Four prediction scenarios and six kernel-5 

models within/across TPEs were tested. Our results suggest that the conventional 6 

GBLUP, without enviromic data or when omitting EPA, is inefficient in predicting the 7 

performance of wheat lines in future years. Nevertheless, when EPA was introduced as 8 

an intermediary learning step to reduce the dimensionality of the G×E kernels while 9 

connecting phenotypic and environmental-wide variation, a significant enhancement of 10 

G×E prediction accuracy was evident. EPA revealed that the effect of seasonality makes 11 

strategies such as “covariable selection” unfeasible because G×E is year-germplasm 12 

specific. We propose that the EPA effectively serves as a “reinforcement learner” 13 

algorithm capable of uncovering the effect of seasonality over the reaction-norms, with 14 

the benefits of better forecasting the similarities between past and future trialing sites. 15 

EPA combines the benefits of dimensionality reduction while reducing the uncertainty of 16 

genotype-by-year predictions and increasing the resolution of GP for the genotype-17 

specific level. 18 

Key words:  genomic selection; climate change; wheat breeding; envirotyping; 19 

adaptability; target populations of environments 20 

 21 

INTRODUCTION 22 

Traditionally, the importance of genotype by environment interactions (G×E) has 23 

been seen as problematic source of variation that must be taken into consideration for 24 

plant breeding decisions.  As such, many computational tools and statistical models have 25 

been developed and used for studying G×E in diverse scenarios and contexts (Crossa et 26 

al., 2017). Essentially, the goal of any G×E analytics is to enable plant breeders to assess 27 

the stability of target traits under multiple-environment trial (MET) conditions. Since 28 

the introduction of predictive breeding strategies, such as genomic prediction (GP), 29 
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these goals must also support the prediction of the phenotypic performance of newly 1 

developed cultivars, which are mostly evaluated under a pool of selected environmental 2 

conditions – also known as the target population of environments (TPE) of breeding 3 

programs. Although MET are useful for selecting stable and high yielding varieties 4 

(Crossa et al., 2004) for the environments included in the trialing network, they are less 5 

suitable for providing targeted recommendations for specific environments (e.g., site 6 

and year combinations), especially those where no field trials were performed.  7 

Since the early 1930s, a diverse set of statistical methods have been developed to 8 

incorporate additional (co)variables as a proxy of the environmental causes of G×E. This 9 

rich history of  “analytical” methods started with the traditional regression (or reaction-10 

norm) models of Yates and Cochran (1938); Finlay and Wilkinson (1963); and Eberhart 11 

and Russell (1966) describe environments based on the mean performance of cultivars 12 

in the test environments. However, instead of regressing the mean grain yield of cultivar 13 

performance on the mean grain yield of the environments (environmental quality 14 

index), environmental covariates can be used to characterize both (1) the environments 15 

in the MET and also (2) new target environments (Hardwick and Wood, 1972) that were 16 

not included in the MET trials.  17 

Classical approaches were most used to interpret G×E rather than to predict it. 18 

This can be seen in the use of fixed-effect linear-bilinear models, with the most used 19 

being the Sites Regression (SREG) (Crossa and Cornelius, 1997) and the Additive Main 20 

effect and Multiplicative Interaction (AMMI) (Gauch, 1988; Cornelius et al., 1996). 21 

Essentially, these models are generalizations of single regressions on environmental 22 

data – aimed to compute genotypes reaction-norms and in this way, study the genotypic 23 

response patterns across environments. In these models, the response patterns of 24 

genotypes and environments can be visualized graphically using biplots that allow the 25 

breeder to observe the high performing genotype(s) in a region(s) and/or sub-region(s). 26 

Partial least squares (PLS) regression is also a type of fixed-effect linear model that 27 

allows external environmental and genotypic covariables to be directly incorporated 28 

into the model and has been demonstrated to be useful at identifying the climatic causes 29 

of G×E or the genetic factors (e.g., molecular markers) influencing G×E (Aastveit and 30 
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Martens, 1986; Helland, 1988; Vargas et al., 1998; 1999; Montesinos-Lopez et al., 2022). 1 

In fact, the first mention of the use of high-throughput environmental data 2 

(“enviromics”) in plant science involved the use of PLS for scanning mechanisms acting 3 

in the internal cell environment (Teixeira et al., 2011).  This concept was recently 4 

popularized by some seminal papers such as Resende et al. (2021) and Costa-Neto et al. 5 

(2021b), who mostly addressed the benefits of using enviromics to aid genomic 6 

prediction based on prior studies involving the so-called reaction-norm GBLUP (Jarquin 7 

et al., 2014; Morais-Junior et al., 2018). 8 

As modern plant breeding is an interdisciplinary field based on multi-9 

dimensional data types, the importance of developing new enviromics pipelines is key 10 

for successful prediction of G×E (de los Campos et al., 2020; Crossa et al., 2021). In the 11 

field of genomics, for instance, the availability of high density, low-cost genetic markers 12 

has made it possible to saturate the genome with these markers and predict estimated 13 

breeding values (Bassi et al., 2015). This has increased the precision of genetic value 14 

prediction compared to that achieved with traditional pedigree information. Genomic 15 

data can also help assess chromosome regions, e.g., marker effects and patterns of 16 

(co)variability of marker effects linked to different environmental conditions. Since the 17 

analysis of genetic and genomic data is one of the most challenging statistical problems 18 

currently faced, different models from diverse areas of statistical research need to be 19 

integrated in order to make significant progress in understanding genetic effects and 20 

their interaction with environments. In addition, new environmental sensors and 21 

remote sensing technologies (Morisse et al., 2021) permit the real-time, dynamic 22 

collection of environmental covariables with very high resolution anywhere in the 23 

world. Thus, marker technology combined with the rapid digitalization of high density 24 

environmental covariables (EC) and in-season image capture offers a new set of 25 

opportunities for improving the performance of MET for greater targeting of plant 26 

breeding (Crossa et al., 2021). 27 

Jarquín et al. (2014) and Heslot et al. (2014) introduced the concept of genome-28 

based reaction norms to model G×E using many environmental covariates (e.g., weather 29 
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data, soil properties, crop growth model outcomes). Since then, a new wave of studies 1 

focused on the prediction of unobserved genotypes in new untested environments (see 2 

Crossa et al., 2022). The so-called linear kernel-based reaction norm model of Jarquin et 3 

al. (2014) was utilized by Pérez-Rodríguez et al. (2015), employing pedigree and 4 

environmental covariates in cotton trials. Similar substantial gains in prediction 5 

accuracy of genotype performance were obtained by Cuevas et al. (2016; 2017; 2018; 6 

2019), He et al. (2019) and Costa-Neto et al. (2021a) using non-linear genomic Gaussian 7 

kernel models for modeling G×E interaction over the conventional linear GBLUP kernel. 8 

However, to date, although these studies have focused on genomic-enabled predictions, 9 

they have neglected two important components: first, the uncertainty of predictions in 10 

new environments, which can be substantial, as demonstrated by de los Campos et al. 11 

(2020); and second, the detailed enviromics assessment needed for the quantification of 12 

soil and climatic variables. Both factors are necessary for studying G×E and for the 13 

prediction of genomic estimated breeding values under different environmental 14 

conditions. 15 

To address this situation, we made some efforts in the past to develop public 16 

envirotyping pipelines, such as EnvRtype (Costa-Neto et al., 2021b),  tested the merit of 17 

nonlinear kernels for modeling the environmental similarities in genomic prediction 18 

(Costa-Neto et al., 2021a), and designed new “environmental markers” to add value in 19 

the prediction platforms (Costa-Neto et al., 2021c) by increasing the resolution of the 20 

predictive models in reproducing the phenotypic plasticity of the plants, while 21 

supporting the optimization of training sets with less phenotyping effort. Other authors 22 

have also addressed this situation by including crop growth models as a supervised 23 

machine learning tool, deep learning approaches using long-term field trial data and 24 

using robust experimental trialing networks for training reaction-norm models using in-25 

field sensors. Despite the benefits of all these approaches, the lack of future 26 

environmental data is still a bottleneck in predicting yet-to-be-seen genotype-by-year 27 

interactions (G×Y). For “proof-of-concept” studies, it is easy to simulate “a new year” 28 

because we already have the environmental data observed in the past; however, for real-29 

world breeding programs, we don’t have any environmental covariate for a yet-to-be-30 

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/advance-article/doi/10.1093/g3journal/jkac313/6861853 by guest on 23 D

ecem
ber 2022



6 

6 

seen year. Because of this, in the current study, we focused on developing new tools for 1 

connecting past and future envirotyping data in order to reduce the uncertainty of G×Y 2 

predictions while using enviromics to add value in the current cultivar testing pipelines. 3 

To achieve this goal, we returned to an old idea of connecting environmental and 4 

phenotyping data to interpret G×E interactions, considering a particular season and 5 

germplasm pool. To facilitate the interpretation of the concept, hereinafter we call it 6 

“environmental-phenotype association” (EPA). The theoretical basis of the EPA 7 

modeling approach assumes the genotypic response over the environmental variation, 8 

and consequently the emergent G×E interaction observed in the experimental network is 9 

strictly related to the envirotype-to-phenotype dynamics observed for each genotype 10 

and its evaluated growing conditions. Thus, the core of the reaction-norm not only 11 

determines the main drivers of the G×E (Millet et al., 2019; Costa-Neto et al., 2021a; 12 

Porker et al., 2020; Heinemann et al., 2022), but also explains how the environmental 13 

conditions have shaped the phenotypic correlations among experimental sites. Because 14 

of this property, here we used EPA as an intermediary step to adapt the envirotyping 15 

data (covariables) into environmental weights of similarity, while also exploring 16 

genotype responses for those factors (that is, reaction-norms) as a secondary source of 17 

genetic variation to approach genomics and the observed G×E. This analysis was also 18 

interpreted as a “reinforcement learning algorithm” capable of recycling past EPA as a 19 

precursor for future growing conditions and phenotypic responses. 20 

To test this hypothesis, we analyzed a real-world breeding program and its 21 

intrinsic complexities observed in experimental trials (e.g., unbalanced conditions and 22 

diverse sets of locations across years). Within the CIMMYT Global Wheat Breeding 23 

Program, recent efforts have been made to describe, measure, and analyze G×E in MET 24 

tested breeding materials across major wheat growing areas around the world. This has 25 

shown that performance in CIMMYT’s main breeding and testing location in Mexico is 26 

correlated with various international sites belonging to TPE (or mega-environments, in 27 

this case) that represent the world’s major wheat producing areas (Rajaram et al., 1994; 28 

Braun et al., 1996; Crespo-Herrera et al., 2021). The delineation of TPE are based on 29 

climate, soil and hydrological characteristics and can also include socioeconomic factors, 30 
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such as the resource levels of farm households. There are also different ways to group 1 

trials and environments into a TPE. Data from environmental sensors and satellites can 2 

be used to develop stratified hierarchical cluster analyses of sites and thus identify 3 

homogeneous environments wherein line performances will be highly correlated 4 

(Ornellas et al., 2019; Crespo-Herrera et al., 2021). A TPE can be defined as a group of 5 

production environments that can be utilized for breeding in future years and/or in 6 

variable growing seasons, it is expected that the G×E may result from relatively static 7 

and predictable variation—for example, in soil or other conditions across the field—and 8 

dynamic, unpredictable, and often significant temporal variability—i.e., weather over 9 

different years. Thus, here we also check the merit of EPA as a data-driven approach in 10 

identifying those mega-environments and pinpoint the “essential trialing sites” within 11 

each environmental group, that is, identify the number of locations that represents the 12 

maximum diversity of growing conditions for each TPE (or across TPEs). 13 

Based on the previous considerations the objectives of this study were to (1) 14 

demonstrate the benefits of the environmental-wide association analysis (EPA) 15 

combining historical phenotypic and envirotyping data for purposes of predictive 16 

breeding (e.g., multi-environment genomic prediction) and analytics (e.g., identifying 17 

essential trialing sites); (2) present three new multi-environment GBLUP models 18 

combining diverse EPA outcomes and compare them with benchmark approaches with 19 

and without envirotyping data; (3) discuss the limits and the potential research gaps for 20 

predicting yet-to-be-seen years in multi-environmental trials in predictive breeding; (4) 21 

discuss goals (1-3) in terms of its applications for a real world breeding program for 22 

wheat in India. 23 

 24 

METHODS 25 

CIMMYT historical wheat data 26 

We used grain yield (GY, Mg ha-1) as the reference trait in this study. Data were 27 

collected from 2011–2018 crop cycles of Elite Spring Wheat Yield Trials (ESWYT) 28 

nurseries carried out in India and based on a previous and extensive study done by 29 
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Crespo-Herrera et al. (2021) that aimed to define TPEs for CIMMYT wheat breeding in 1 

India (see Supplementary Figure S1). Here, we considered 370 wheat lines and 130 2 

environments, which involved 36 locations and three TPEs: TPE 1, the optimally 3 

irrigated Northwestern Plain Zone; TPE 2, the optimally irrigated, heat-stressed 4 

Northeastern Plains Zone; and TPE 3, the drought-stressed Central-Peninsular Zone.  5 

Details about the data involved in the experimental analysis, phenotype correction 6 

criteria and genotyping are given in Crespo-Herrera et al. (2021). Due to the highly 7 

unbalanced conditions (different genotypes across years and years with different 8 

locations), this data set is ideal for testing the prediction of untested genotypes in yet-to-9 

be-seen years in a real-world breeding program. Details about how this trialing 10 

complexity was explored in different cross-validation scenarios are presented in 11 

subsequent sections. 12 

 13 

Envirotyping protocol 14 

Here we considered “location” as a certain trialing site (geographical location), 15 

while "environment unit", or simply “environment”, was considered as a combination of 16 

certain location × year × management. In this study, we considered only 17 

macroenvironmental variations (those variations for an entire field experiment, rather 18 

than in-plot or plant specific microenvironments). Thus, considering a historical 19 

breeding data, a certain location experienced a diverse set of macroenvironments across 20 

the years, and receiving a diverse set of genotypes evaluated at those field experiments.  21 

We considered two ways of envirotyping: one focused on characterizing 22 

“environments” using information for a single season (Steps 1 and 2 in the protocol 23 

detailed below), while a second was dedicated to characterizing “locations”, using the 24 

information across seasons (Steps 1, 2 and 3 in the protocol described below). 25 

Consequently, this resulted in two different environmental similarity matrixes (ERM). 26 

For “environments”, we used the conventional terminology of W-matrix, with dimension 27 

of environments × envirotyping covariables. For “locations”, we introduced the use of a 28 

new ERM based on the seasonal-averaged effects (S-matrix for locations), with 29 
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dimension of locations × seasonal envirotyping covariables. Below, we describe the four 1 

steps of those protocols. 2 

Step 1: Raw data collection. The raw environmental data (soil and meteorological 3 

variables, which can be found in Supplementary Table S1) was collected using remote 4 

sensing databases, such as NASA POWER and in-field evaluations of soil data, as done by 5 

Crespo-Herrera et al. (2021), where more details can be found. Additionally, we computed 6 

variables with a higher biological meaning, such as growing degree days (GDD), vapor 7 

pressure deficit (VPD, kPa/day), evapotranspiration (ET0), atmospheric water balance (P-8 

ETP) and the effect of temperature stress on radiation use efficiency, FRUE = {0,1}, as 9 

described in the EnvRtype package in R (Costa-Neto et al., 2021c). The cardinal 10 

temperatures for GDD and FRUE calculations were assumed the same for pre and post 11 

anthesis stages, with Tmin = 0, Topt = 27.7, and Tmax = 40, as given in Wang and Engel 12 

(1998). We also subdivided the crop lifetime into “time windows” denoting a generalization 13 

of the expected development stage according to the Zadock’s scale for wheat (Zadoks et al. 14 

1974), and following heat units for defining the windows of each stage (Rawson and 15 

Macpherson, 2000): (Stage 0 - 3) sowing to emergence, then to double-ridge (260° C.day-1); 16 

(Stages 3 to 5) double-ridge to terminal spikelet (+150° C.day-1); (Stages 5 to 6) terminal 17 

spikelet to heading (+350° C.day-1); (Stages 6 to 7) heading to anthesis (+° C.day-1); (Stages 18 

7 to 9) anthesis to grain-filling and maturity (+500° C.day-1), where the symbol “+” denotes 19 

the accumulation of the given heat units for the current stage in relation to the previous 20 

stage.  21 

Step 2: Computing envirotyping covariables (EC) for each environment. The 22 

computation of EC for each environment was done by a combination of meteorological 23 

variable x time window x quantile. Only soil covariables were considered static for each 24 

environment (e.g., clay content); that is, with no temporal scale across the crop lifetime, 25 

where we assumed EC as the combination of soil variable x quantile. Finally, a total of 26 

108 high-quality ECs for each one of the 130 environments (combinations of year and 27 

locations) were found, resulting in 14,040 entries of envirotyping information. The final 28 

W-matrix (130 × 108) was mean-centered and scaled, with 𝑤𝑘~𝑁(0,1). 29 
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Step 3: Computing ECs for each location across seasons. For each location, let’s 1 

assume that for each year of yield testing (each season), a specific W-matrix was 2 

considered. This is a season-specific matrix of envirotyping data and may not be 3 

repeatable across the years, that is, this is a “snapshot” of the possible growing 4 

conditions a certain location may face. Each season has a diverse W-matrix, in terms of 5 

locations and the occurrence of environmental factors; however, the core of W-matrices 6 

across the years can be used to solve this and provide a “prior expectation” for a given 7 

location. It is possible to implement this only when a long-term time-series of 8 

envirotypic and phenotypic data is available for a given location. Thus, by using 9 

historical environmental data, it is possible to calculate the distribution of each 10 

combination of EC by time window across the seasons (assumed here as different years). 11 

This was implemented in terms of quantiles (10%, 50%, and 90%, Morais-Junior et al, 12 

2018; Costa-Neto et al., 2021a) of each EC for a given location, plus each static factor. 13 

Finally, the data were mean-centered and scaled, with 𝑠𝑛~𝑁(0,1). After removing 14 

missing values and duplicated columns, the result was put into a matrix (hereinafter 15 

called an S-matrix) of n = 294 variables for each l = 36  locations, with S (l × 𝑛). 16 

 17 

Learning EPA through Partial Least Squares (PLS) 18 

For the environmental-phenotype associations (EPA), we adopted the non-linear 19 

iterative PLS regression as an approach (NIPALS) due to its popularity, simplicity, and 20 

effectiveness for diverse data types (e.g., Vargas et al., 1999; Teixeira et al., 2011; 21 

Monteverde et al., 2019; Porker et al., 2020; Montesinos-Lopez et al., 2022). The EPA 22 

analysis was performed in two ways, hereinafter referred to as PLS 1 (univariate PLS, 23 

focused on each genotype at the time) and PLS 2 (multivariate PLS, focused on the 24 

environmental relatedness), as detailed jointly with the genomic prediction models in 25 

further sections (see Supplementary Figure S2). Additional details of the NIPALS 26 

algorithm can be found in Palermo et al. (2009) and Sanchez (2012), as well as in the 27 

Appendix section. For each model, we also computed the Variable Importance in 28 
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Projection (VIP) score. The VIP score has been used as a variable selection method, and 1 

can be computed for each covariable and latent factor as: 2 

                                                 √
 

∑    ( ) 
  1

∑    ( )   
  

  1                                          (Eq. 1) 3 

where 𝒀 is the matrix of responses, m is the number of variables in X (matrix of ECs, see 4 

Appendix); c is the number of components considered; 𝑙 𝑗
 

 is the PLS weight of the j-th (j 5 

= 1, 2,…, m) variable for the h-th (h = 1, 2,…, c) at each component; and 𝑆𝑆 (𝑌) is the 6 

proportion of Y explained by the h-th component. From the VIP, we calculated the 7 

relative VIP % by dividing each VIP by the maximum VIP for each genotype (PLS 1) or 8 

environment (PLS 2). The PLS approach was implemented in R using the plsdepot 9 

package (Sanchez, 2012). 10 

 11 

Integrating EPA outcomes in Predictive Models 12 

Next, we introduced the use of EPA as an intermediary learning step in genomic 13 

prediction. We used six models, in which the first three (M01-M03) were used as 14 

benchmark approaches and are currently used for multi-environment GBLUP, while the 15 

last three models (M04-M06) involved the inclusion of some EPA outcomes. A summary 16 

of the kernel assumptions is given in Table 1. More detail about the relationship matrix 17 

is given below according to each model’s description. A detailed summary of these 18 

approaches is given in the Appendix 2 , Table A1, Genomic prediction models. In this 19 

study, we assumed M01 as simplest multi-environment GBLUP model, not considering 20 

other possible structures for variance-covariance for residuals or GxE, such as done 21 

using factor analytic with envirotyping data (e.g, Rogers et al., 2021; Rogers and Holland 22 

(2022). By doing this, we expected to measure the independent effect due to the addition 23 

of complex environment relationship structures and EPA results, as described below in 24 

the next models (M02-M06). Implications of such approaches involving EPA analysis, as 25 

well its adoption over different packages or computational tools, should be discussed in 26 

further studies 27 
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 1 

All models were fitted using the EnvRtype:kernel_model() functions, which is 2 

based on the kernel-optimized Hierarchical Bayesian approach implemented by the 3 

BGGE package (Granato et al., 2018). More details about this approach can be found at 4 

Costa-Neto et al. (2021b). We considered 15,000 iterations, in which the first 5,000 were 5 

used as burn-in considering a thinning of 5. The seed used was equal to set.seed(1112).  6 

 7 

M01: Conventional multi-environment GBLUP 8 

This model accounts for the main genetic effects and kernel-based G×E, assuming 9 

a block diagonal genomics by environment (Lopez-Cruz et al., 2015; Souza et al., 2017), 10 

following   11 

                                      1                                           (Eq.2) 12 

where   [  ,  ,   ]
  are the vectors of observations collected in each of the   13 

environments with   wheat lines; 1  is the vector of fixed intercept;    and    are the 14 

incidence matrix of genetic and environmental effects;    is the vector of random 15 

environmental effects modeled by     (0,  
   ), in which   

  is the variance 16 

component related to the macro-environmental variation and    is the kernel of macro-17 

environmental effects, where the ERM were assumed as an identity matrix of q 18 

environments across the p genotypes         , that is, no prior relation was 19 

expected among environments. The genetic effects are modeled by a random main effect 20 

(  ), distributed as     (0,    
 ), with        , and a secondary kernel 21 

for environment-specific genetic effects due to G×E, represented by (   ), with 22 

     (0,      
 ) and modeled as multiplicative effects due to the GRM and ERM 23 

variations: 24 

          (     ) (    )        
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where       
      

 
 , with  and   were denoted as the products of Kronecker’s and 1 

Hadamard’s, respectively. The matrix    and    denote the full-entry matrix of 1s with 2 

dimensions of p x p and q x q, respectively. Under balanced situations (every genotype at 3 

every environment),     could simply be computed as:         . Finally, the 4 

vector of residuals is assumed as a relaxed form for residuals, with    (0,     
 ).   5 

 6 

M02: Reaction-norm GBLUP with a linear kernel for W-matrix ( ) 7 

In this model (Jarquín et al., 2014), we considered the conventional use of 8 

envirotyping data (W-matrix) and consequently, also the linear variance-covariance 9 

matrix for environmental similarity as:  10 

                                                                    
   

  (   )  
                                                         (Eq. 3) 11 

with   (q ×  ), where   (q × m), with  m environmental covariables (m = 108) and q 12 

environments. Consequently, the new kernel for modeling macro-environmental effects 13 

is now given by        , and the subsequent G×E structure is:  14 

          (    ) (    )       
 
      

 
 

or simply         under balanced conditions as previously described. Thus, now 15 

the    accounts for the degree of similarity among environments (given by a linear 16 

correlation), while the     is now the genotype-environment specific effects aimed to 17 

mimic reaction-norms. 18 

M03: Reaction-norm GBLUP with a nonlinear Gaussian kernel for W-matrix (𝜸) 19 

From models M03 to M06, we adopted the Gaussian Kernel approach (GK) as the 20 

nonlinear method for modeling the environmental similarity (given by distances, He et 21 

al., 2019 and Costa-Neto et al., 2021b). In model M03, although the nonlinear ERM (𝜸) 22 

was computed using the same W-matrix in M02, we adopted a different notation to 23 

differentiate the linear kernel (𝜴) and the nonlinear kernel (𝜸), which was estimated as: 24 
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     {
‖    ‖

 

 
}                                                         (Eq. 4) 1 

with   (q ×  ), where ‖    ‖
 

 is the Euclidean Distance between each element of 2 

the W-matrix, and   is a scaling factor assumed as the median value of the Euclidean 3 

distance matrix. Note that no bandwidth factor was considered in this equation 4 

(assumed as 1). Thus, model M03 is composed of         ,    (    )  and 5 

          (    ) (    )       
 
      

 
 or simply       6 

  under balanced conditions as previously described. 7 

 8 

M04: Reaction-norm GBLUP with environmental weights ( ) from EPA 9 

Here we introduce the EPA algorithm as an intermediary step in the multi-10 

environment GBLUP. EPA is expected to be capable of linking historical phenotypic and 11 

envirotyping data, reducing the issue of lacking future envirotyping data while 12 

estimating the actual magnitude and impact of the environmental factors in the 13 

phenotypic variation observed in the trialing network. Below, we describe the four steps 14 

for incorporating EPA outcomes from the EPA algorithm in the baseline multi-15 

environment GBLUP . 16 

Step 1: Computation of the long-term envirotyping-based S-matrix 17 

Now we consider the S-matrix instead of the W-matrix. As described in the 18 

Envirotyping Protocol section, the S is a matrix with dimension of location x seasonal 19 

ECs, where the seasonal ECs are a combination of ECs by quantiles (10%, 50% and 90%) 20 

across seasons; thus 108 x 3 =  324 seasonal ECs. 21 

Step 2: Computation of the empirical  0 kernel of phenotypic correlations 22 

To address the lack of information for future envirotyping data, this step aims to 23 

connect the past “envirotyping-realized” similarity into an “actual” similarity observed 24 

among environments, that is, the real phenotypic correlations among trialing sites. To 25 
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implement this, the second step of this approach now focuses on computing a core of 1 

“empirical index” for a given trait, similarly as proposed by the conventional mean-2 

centered average yield value approaches (Finlay and Wilkinson, 1963; Eberhart and 3 

Russell, 1966).  4 

For each location, we computed quantiles of 10%, 50% and 90% for grain yield 5 

using all phenotypic records across years and genotypes, thus attempting to capture the 6 

distribution for grain yield for a given location. Then, we extracted a pool of “empirical 7 

environmental indices” (hereafter called an S0-matrix), which are based on empirical 8 

phenotypic data. Thus, while S contains the seasonal envirotyping data, the S0 contains 9 

the seasonal descriptors of the environmental quality derived from the past observed 10 

phenotypes. This S0-matrix was then used to create an empirical location-relatedness 11 

kernel ( 0, with r × r, where r is the number of locations), also following the nonlinear 12 

Gaussian kernel approach as: 13 

 0     {
‖ 0  0

 
‖
 

 }                       (Eq. 5) 14 

Note that this approach can be used considering an expected cropping time for a 15 

given location, which means that a statistic for each trialing site could accommodate a 16 

time-scale variation for diverse planting dates. For example, a same location could 17 

accommodate several “expected environments” by a combination of planting dates at 18 

each location. However, for the purpose of simplicity, and because most plant breeding 19 

programs perform analysis in almost the same planting seasons across years, here we 20 

considered the seasonal variations of envirotyping data for a static location and planting 21 

date. 22 

Step 3: Translating envirotyping data into environmental weights ( ) 23 

Next, the phenotype-based matrix   0 is then dissected using the envirotyping-24 

based S-matrix with the multivariate PLS enabled by the NIPALS algorithm (PLS 2, see 25 

Appendix). This approach can be mathematically represented as: 26 

                                                              0      0
 

                                               (Eq. 6) 27 
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where  0 (r × r) is an empirical (phenotype-based) relatedness;   (r × n) is the 1 

matrix of envirotyping data by location averaged across seasons;   (r × n) is a matrix of 2 

estimated orthogonal PLS coefficients for each n envirotyping data, interpreted here as 3 

the environmental weights derived from the environmental-phenotype association and 4 

specific for each location; and  0
 

 (r × r) is the residual location diversity not captured 5 

by the envirotyping covariables in the W-matrix. 6 

An interesting output of this analysis is the interpretation of the environmental 7 

factors that drive the similarity among locations. For this, the locations can be grouped 8 

using some clustering analysis (e.g., hierarchical clustering based on the principal 9 

components analysis). Finally, the interpretation of the VIPs scores (see Eq. 1) for each 10 

environmental covariable is a sign of how these factors have historically shaped the 11 

diversity among locations for a given trait in the breeding program. 12 

Step 4: Nonlinear kernel ( ) using the environmental weights ( ) 13 

The environmental weights should be a better descriptor of the environmental 14 

similarities because they highlight how the growing conditions have affected phenotypic 15 

variation and experimental quality. Consequently, we propose using them as markers of 16 

the environmental relatedness, which can replace the conventional direct use of 17 

envirotyping covariables as done in the previous ERM approaches. Here, by using the 18 

nonlinear Gaussian kernel over the   matrix, now it is possible to compute an 19 

environmental-similarity matrix for locations as: 20 

            {
‖    ‖

 

 
}                                             (Eq.7) 21 

with   (r × r),  thus,    (    ) and, consequently,     (    ) (   22 

 )       
 
      

 
 . 23 

 24 

M05: Reaction-norm GBLUP with genotype-specific factors (R-matrix) from EPA 25 
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Model M05 introduces the use of a second EPA outcome. Here the focus is on 1 

studying the reaction-norm patterns from the genotypes in historical breeding trials, to 2 

finally recycling it as secondary source of genetic variation (hereinafter called R-matrix). 3 

This model is an update of model M04, that is, it considers the protocols previously 4 

described for computing the 𝜱 matrix. 5 

Step 1: EPA analysis for computing genotype-specific coefficients (𝜆) 6 

A site-regression (SREG, Crossa and Cornelius, 1997) model is fitted for each 7 

genotype with both phenotypic and envirotypic data available, which means that a 8 

specific regression model is fitted according to the number of observations available for 9 

a given genotype. The purpose of this approach is to dissect the genetic-plus G×E effects 10 

in terms of genotype-specific coefficients of reaction norm (hereafter named  ) using 11 

the univariate PLS (PLS 1, see the Appendix). This modified SREG model using 12 

envirotyping data (Costa-Neto et al., 2020) is given by: 13 

                                                                                                            (Eq. 8) 14 

where 𝒚  𝒚𝒒 (q × 1) is a vector of phenotypic values for each genotype centered for 15 

each test environment; 𝑾 (q × m) is a matrix of environmental covariables per 16 

environment (conventional envirotyping data); 𝝀 (m × 1) is a vector of genotype-17 

specific coefficients, assumed as the empirical reaction-norms for the given 18 

environmental covariable (reaction-norm); and 𝑭 
 (q × 1) is a vector of the residual 19 

SREG analysis not captured by the univariate PLS algorithm. Finally, after running this 20 

model for each p genotype, every vector containing the m genotype-specific coefficients 21 

was combined into a single matrix as 𝜦   𝝀 , 𝝀 , 𝝀3,  , 𝝀𝒑 
𝑻

, with 𝜦 (p × m).  22 

Due to the process of scanning reaction-norms into the modified SREG model, it is 23 

also possible to use the outcomes of the PLS approach to identify what environmental 24 

factors most affect the performance of a certain genotype. The interpretation is done by 25 

analyzing the magnitude and direction (positive/negative) of the genotype-specific 26 
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reaction-norms, while the variable importance on projection (VIP) could be used to 1 

score its importance. Because of this, now the EPA analysis integrates the classical G×E 2 

dissection studies (e.g., Crossa et al., 1999; Porker et al., 2019; Costa-Neto et al., 2020) 3 

into the current multi-environment genomic-enabled prediction platforms. 4 

Step 2: Estimation of the adaptability through a reaction-norm based kernel (R) 5 

In this step, we recycled the past reaction-norms as markers of the major G×E 6 

variation observed in the historical field trials. Then, the 𝜦 matrix, used as a genetic 7 

covariable, aimed to serve as a secondary source of environmental-specific genetic 8 

variation due to the shared reaction-norm patterns of the past evaluated genotypes.  9 

Because of the process carried out, this source of genetic variation does not follow an 10 

infinitesimal model and presented the same issues that are expected for environmental 11 

data (lack of linearity and additivity, Costa-Neto et al., 2021a,b). Next, we used a 12 

nonlinear kernel (Gaussian Kernel) to translate the 𝜦 matrix into a reaction-norm 13 

similarity matrix (𝑹) as: 14 

                                                                                   {
‖    ‖

 

 
}                                    (Eq. 9) 15 

with 𝑹 (p × p) if all genotypes are considered.  16 

Step 3: Estimation of the reaction-norm weighted G-matrix (H) 17 

In practice, plant breeders don’t have enough phenotypic information to compute 18 

the R-matrix, especially if the goal is to predict the performance of a new genotype into a 19 

new season. To address this, we propose merging this R-matrix with the conventional G-20 

matrix in an analogy of what is commonly done for combining pedigree and genomics in 21 

the so-called “single-step genomic prediction” (Martini et al., 2018). However, for this 22 

scenario, the G-matrix (p × p) is known for all genotyped individuals (whether or not it 23 

was previously evaluated), while the R-matrix (t × t) only considers the empirical 24 

reaction-norm estimated for tested genotypes, that is, the training set, with t genotypes, 25 

in which p = t + v, and v is the number of yet-to-be tested genotypes (testing set). 26 
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Because of this, by using the equation from Martini et al. (2018) it is possible to merge G 1 

and R into a so-called “G-matrix weighted by reaction-norms” (hereinafter called H or H-2 

matrix), or simply a Single-Step Reaction-Norm model, computed as: 3 

 4 

𝑯  𝑮   
𝑮  𝑮  

  (𝑹   𝑮  )𝑮  
  𝑮  𝑮  𝑮  

  (𝑹   𝑮  )

(𝑹   𝑮  )𝑮  
  𝑮  (𝑹   𝑮  )

               (Eq.10) 5 

with 6 

𝑯    𝜏𝑹 1  (1 𝜔)𝑮  
 1

 
 1

                                                                                 (Eq. 11) 7 

where 𝑯 (p × p), 𝜏 and 𝜔 are scaling factors aimed at reducing inflations of the 8 

predictions and ensuring the convergence of the iterative approaches in the mixed 9 

models. To simplify the methodology, in this study the scaling factors were assumed as 10 

1; however, this can be fine-tuned in further studies considering the characteristics of 11 

each germplasm and trialing network.  12 

Finally, the kernel-based G×E term was replaced from 𝑲𝑮𝑬 to 𝑲𝑯 as 𝑲𝑮𝑬  𝑲𝑯  13 

(𝑱𝒒  𝑯)  𝒁𝑮𝑯𝒁𝑮
𝑻  with: 𝑲𝑮  𝑱𝒒  𝑮 and 𝑲𝑬  (𝜱 𝑱𝒑). We considered that there 14 

was no need to replace G with H in those effects, as H is a matrix dedicated to model only 15 

the G×E. Thus, this is a solution for incorporating genotype-specific sensibilities into a 16 

more parsimonious kernel-based model. The single-step procedures were done using 17 

the AGHmatrix package (Amadeu et al., 2016). 18 

 19 

M06: Reaction-norm GBLUP with single-step G×E kernel from EPA 20 

Model M06 involved the implementation of single-step weighted G×E kernel 21 

considering all the information from the matrices G, R,    and   as previously described. 22 

The goal of this approach was to implement an “environmental learning” practice 23 

capable of merging the past trends of reaction-norm (R,  ) with expectations of reaction-24 

norm (G,  ). In this model, the main genetic effects and environmental variations were 25 
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modeled the same way as in models M04 and M05, that is, as:         and 1 

   (    ), respectively. The difference in this model is how the nonlinear G×E 2 

interaction terms are modeled. This approach is implemented in three main steps.  3 

 4 

Step 1: Estimating past kernel-realized reaction-norms 5 

First, we estimated the past G×E, that is, the G×E observed in the historical field 6 

trials used as training sets. We considered a realization of these past or historical G×E by 7 

combining the GRM based on the R-matrix (t x t) and an ERM based on the W-matrix (j x 8 

j), in which j is the number of environments in the training set. This step is preceded by 9 

the PLS approach, as done for model M05, in which we already estimated the R-matrix, 10 

as well as considered a nonlinear W-matrix of covariables ( ), as in model M03. Using 11 

the Kronecker product between these two matrices, we achieved the past G×E (for the 12 

historical data set) by      , with M (s × s) and s as the size of historical data 13 

using (s = vt) as the training population set. We used the notation   to simplify further 14 

algebraic demonstrations. 15 

 16 

Step 2: Estimating future kernel-realized reaction-norms 17 

In an analogy to the method presented in the previous subsection, we created a 18 

“full rank G×E”, involving all genotypes and locations, as observed in the G×E kernel in 19 

model M04. Then we used the static-effect matrix, built up from the environmental 20 

weights that each location historically faced ( ) as a precursor of a next-year growing 21 

condition, plus a G×E kernel (here referred to as N to facilitate the mathematical 22 

demonstration) was created as:      , with N (n × n) as n is the number of 23 

genotypes and environments considered for analysis (training set + testing set). We used 24 

the notation   to simplify further algebraic demonstrations. 25 

 26 

Step 3: Combining past and future kernel realizations of G×E 27 
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Finally, the end-result weighted kernel for G×E effects (   ) is directly 1 

computed by combining the   and   kernels as: 2 

If         and       , then: 3 

 4 

𝑲𝑮𝑬  𝑵  
𝑵1 𝑵  

 1
(𝑴   𝑵  )𝑵  

 1𝑵 1 𝑵1 𝑵  
 1

(𝑴   𝑵  )

(𝑴   𝑵  )𝑵  
 1𝑵 1 (𝑴   𝑵  )

       (Eq. 12) 5 

with 6 

                             𝑲𝑮𝑬  
  𝜏𝑴 1  (1 𝜔)𝑵  

 1
 
 1

                                              (Eq. 13) 7 

where     is an n x n dimension, and   =   =1. In Eq. 12, we have two groups of 8 

genotype-environment combinations. Group 1 involves the genotypes already evaluated 9 

in past field trials, for which we have all possible information related to the phenotypes, 10 

reaction-norm and faced environmental growing conditions. Group 2 is based on 11 

genotypes never tested in any past field trial, and environments for which we only know 12 

the static-effect priors obtained from long-term historical envirotyping analyses. All 13 

analyses were conducted using R statistical software (R Core Team, 2022).  14 

 15 

Prediction scenarios over the historical CIMMYT wheat trials 16 

Four scenarios were evaluated in this study. Scenario 1: the first scenario 17 

considered the predictions of an entire new year using the previous year as a training 18 

set. As the data set is highly unbalanced, this also involved the prediction of new 19 

genotypes at locations that may or may not be considered in the training set. Scenario 2 20 

considers the same approach, albeit a different model was adjusted for each one of the 21 

three TPE previously identified by Crespo-Herrera et al. (2021) (see the Historical wheat 22 

trial data section). Scenario 3 is the same as Scenario 1 but considers multiple years as 23 

the training set. In this scenario, we considered two consecutive years to predict a 24 

subsequent year. Scenario 4 is the same as Scenario 2, but also considers pairs-of-25 
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previous years as a training set for a subsequent year for each TPE individually. The goal 1 

of Scenarios 3 and 4 was to verify if it was necessary to use phenotypic data from more 2 

than one subsequent year since subsequent years are expected to have the highest 3 

genetic correlation, in addition to being more similar in environmental conditions. Thus, 4 

the comparison of Scenarios 1-2 and 3-4 may support the interpretation of how 5 

phenotypic and envirotypic information from another TPE is useful for making broad 6 

predictions for a following year, or whether the use of TPE-specific models is more 7 

suitable. 8 

Three statistics were used to measure the quality of the prediction: (1) average 9 

predictive ability (pa) at “model level”, as is conventionally done for testing models in 10 

genomic prediction; (2) genotype-specific predictability, based on the Spearman rank 11 

correlation between the predicted and observed values for each genotype in a new year, 12 

as suggested by each genotype (Costa-Neto et al., 2021a,b); (3) the relation between the 13 

predictive ability of the model and the proportion of the wheat population that was 14 

considered “predictable”, that is, with pa  ≥ 0.2.  Here we consider the combination of 15 

predictive ability and resolution as a practical measure of the accuracy and usefulness 16 

for plant breeders when making decisions for the following years. 17 

Search for Essential Locations in Indian TPEs 18 

The last proposal of our theory relies on the supposition that a good enviromic-19 

based pipeline for testing cultivars and training models for predicting G×Y must also 20 

account for the search of “essential locations for phenotyping”. This approach was 21 

implemented by running a grouping analysis of the locations using the environmental 22 

weights ( ) instead of using raw envirotyping data as was done in the past. For this, we 23 

ran a principal component analysis (PCA), followed by a hierarchical clustering using the 24 

Euclidean Distance and then the Ward’s grouping algorithm. These approaches were 25 

implemented using the package FactorMineR (Lê et al., 2008). Then, a number of 26 

clusters (Nc) found in this analysis was used as the number of “essential locations”.  27 
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Next, we searched for the most representative locations at each cluster, here 1 

called “pivot locations”. Again, the matrix of environmental weights ( ) was used for 2 

this purpose and were dissected using a genetic algorithm based on PEVmean criteria, as 3 

implemented in the SPTGA R package (Akdemir and Sánchez, 2019). The genetic 4 

algorithm was parametrized using 100 iterations, and five solutions selected as elite 5 

parents were used to generate the next set of solutions and mutations of 80% for each 6 

solution generated. For each cluster, we analyzed the similarity between each location 7 

and its cluster-pivot location in order to find possible “replacements” for those locations. 8 

This approach was done by selecting those locations with a similarity equal to or higher 9 

than 95% with each cluster’s pivot location. The clusters found in this study were also 10 

interpreted using the TPE characterization done by Crespo-Herrera et al. (2021). 11 

RESULTS 12 

Variable importance for modeling environmental similarities across years 13 

This section presents the results of the environment-wide characterization 14 

focused on understanding the envirotype-phenotype association (EPA) driving 15 

similarity among trialing sites (locations). The results are presented (and interpreted) in 16 

two steps: (1) in terms of variable importance in projection (VIP) and (2) the use of 17 

weights for grouping environments and finding essential locations for METs in India. 18 

Figure 1 shows the general characterization of the 36 locations in India using the 19 

seasonal envirotyping covariables and EPA analysis across years. The relative values of 20 

VIP % derived from the multivariate PLS (PLS 2, Figure 1A) involving the long-term 21 

envirotyping for locations and an empirical environmental index (from phenotypes). The 22 

number of latent vectors (LV) was equal to 8, which was selected based on the number 23 

of LV capable of explaining at least 90% of the phenotypic-based environmental 24 

similarity. For computing the most important variables, we assumed a threshold of 95% 25 

(here relative to VIP % equal to or higher than 85%). More detail is given in the 26 

supplementary Figure S3. For identifying key development stages, we ran the same 27 

analysis for each panel (development stage or soil properties) to find the average VIP for 28 

each panel (Figure 1A).  29 
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From the environmental weights (𝝋 matrix), it was possible to group the 1 

locations in five groups (Figure 1B). These groups were found by using the matrix for a 2 

principal component analysis (PCA), followed by a hierarchical grouping using Ward’s 3 

algorithm. Then we were able to pinpoint the ECs with higher importance (VIP > 85%) 4 

as a descriptor of the environmental profile that each group has (Figure 1C). However, 5 

our results suggest that every environmental factor has a minimum VIP% of ~30% 6 

(Figure 1A), which means that not one piece of environmental information is irrelevant, 7 

rather some of them are responsible for the main expected similarities between the 8 

groups of environments (Figure 1C). As a great number of environmental factors have 9 

greater importance (60-85%, green colors, Fig. 1A), all ECs were used to identify the 10 

group environments. The signatures of the remaining variables is detailed in 11 

Supplementary Figure S4. 12 

With regards to development states, the stage from heading to anthesis (stages 3 13 

to 5) is key for differentiating the quality of the growing environments for wheat in 14 

India. At this stage, a great number of variables has the highest impact (VIP >=85%), 15 

such as the minimum quantile of evapotranspiration (ETP at q10), median value of air 16 

humidity (RH2M q50), minimum quantile of global solar radiation (SRAD at q10) and 17 

rainfall precipitation (PRECTOT q10). Other important combinations of stages/variables 18 

include the vapor pressure deficit (VPD) at the early vegetative stages (e.g., during 19 

double ridge appearance), as the impact of temperature on radiation use efficiency 20 

(FRUE) at anthesis (stages 6 to 7) are key factors contributing to increasing the diversity 21 

of growing conditions. 22 

 23 

Locations that represent the diversity of growing conditions in India 24 

Then, we used the number of clusters (5) as an indication of the effective number 25 

of locations that represents the environmental diversity of the locations in CIMMYT’s 26 

experimental network for wheat in India. Next, we used a genetic algorithm based on 27 

PEV mean criteria to analyze the matrix and identify the five locations most likely to be 28 

“pivotal-locations” for the phenotyping network for India. In this analysis, we identified 29 
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locations ID: Group 1 = 22231, Group 2 = 22257, Group 3 = 22260, Group 4 = 22268 and 1 

Group 5 = 22276 (Figure 2). This means that these locations are essential for conducting 2 

adequate phenotyping that can capture the diversity of growing conditions, thus 3 

lowering the number of field trials.  4 

As occurs in any real-world breeding program, due to some external factors 5 

(logistic, political issues, budget), some favorable locations are not available for 6 

conducting future field trials. To avoid any theoretical gaps in the methodological 7 

analysis, we proposed a score of the locations in relation to the pivot location of each 8 

group identified in the clustering analysis (Figure 2). As a threshold, we adopted a 9 

similarity equal to or higher than 95%. We observed that the following locations (gray 10 

colors) are not necessary for the experimental network: group 1 (22275, 22251, 22205, 11 

22256); group 2 (22214); and group 5 (22284, 22206, 22261). Location 22276 (group 12 

2) seems to be essential, and no other location can replace it. For Groups 4 (pivot 22257) 13 

and 5 (pivot 22231), it is easy to replace this location with any other, giving the 14 

opportunity to use other locations in this group for screening secondary growing 15 

conditions, such as fertilizer or irrigation levels and biotic stresses. 16 

Based on the TPE to which each one of those pivot locations belongs, there is a 17 

concordance with the study conducted by Crespo-Herrera et al. (2021). However, 18 

variations within each TPE were detected, which increased the resolution to find key 19 

locations that represent the variability of all MET in India. For example, the diversity of 20 

TPE 1 is represented by two pivot locations, 22260 (group 1) and 22231 (group 5), 21 

where it seems that the patterns the ECs ETP_q10 [Stages 3 to 5], FRUE q10 [Stages 6 to 22 

7] and windspeed (WS2M_10 and q10 at stage 7 to 9) were key for splitting TPE 1 into 23 

two distinct groups (Figure 1C). The diversity of TPE 2 is represented by the pivot 24 

location 22257 (group 4). Another within-TPE division was observed for TPE 3, which is 25 

now represented by groups 22276 (group 2) and 22268 (group 3). Within TPE 3, the 26 

locations that represent the diversity are differentiated by ECs for a specific 27 

development stage and with a major effect on the atmospheric water balance, mostly 28 

related to precipitation, radiation and air humidity during Stages 3 to 5. 29 
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Hence, the design of field trials in India must follow the pivots (and the 1 

environments related to these pivots), as described in Figure 2, where it should be 2 

possible to better represent the G×E for the purposes of data analysis and training 3 

prediction. It is interesting to note that TPE 1 is the easiest to design, as we have two 4 

main pivots and a larger number of highly similar locations as options. In TPE 3, the 5 

same situations occur, but one essential location (22276) seems to be indispensable to 6 

better capture the diversity of TPE 3. It seems that TPE 2 is the easiest to design due to 7 

the higher similarity among the locations that are part of it. Thus, the characterization 8 

done by Crespo-Herrera et al. (2021) proved to be very successful for gathering the 9 

locations within TPE 2; however, there is a remaining diversity in TPEs 1 and 3 that is 10 

now better understood due to the current study. The ideal MET must consider the five 11 

pivot locations in each year. However, this is not the situation observed in the Indian 12 

MET considered in this study (Figure 2B). The implication of this condition is discussed 13 

in the diagnosis of the joint predictive ability trends across years in the next sections.  14 

 15 

Plasticity patterns reveled by the univariate PLS 1 algorithm 16 

The reaction-norms were computed for each genotype using the univariate 17 

version of the PLS algorithm (PLS 1). To run this algorithm, we first assumed the ideal 18 

number of latent vectors (LV) as those capable of explaining at least 90% of the 19 

genotype-specific G+GE variability. After a basic study and a data control analysis, we 20 

identified 61 ECs suitable for this analysis (Figure 3), which means that ECs with missing 21 

values in some environment or with difficult to interpret biological meaning (e.g., 22 

reaction-norm for wind speed) were removed in this step.  23 

A major proportion of the genotypes were well fitted (R2 ≥ 0.90) with the 24 

number of latent vectors ranging from 3 to 10 (>90% of the germplasm), and a few were 25 

outliers, such as LV from 15 to 30 (2% of the germplasm). Then we collected the variable 26 

importance in projection (VIP) statistic and converted it into relative VIP % by dividing 27 

the VIPs for each genotype by its maximum VIP value (that is, the most important 28 
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environmental variable for a given genotype). The distribution of the % VIPs considering 1 

all genotypes is given in Figure 3. 2 

Soil properties such as CEC (soil cation exchange capacity), WWP (soil water 3 

wilting point) and CLYPPT (clay content) seem to be essential for modeling the 4 

adaptability of the genotypes in all years considered (Figure 3A). For the meteorological 5 

variables (divided by development stages), we observed a wide range of VIPs 6 

(sometimes ranging from 0% to 100%), which indicates huge variability in the 7 

germplasm in terms of reaction-norm. Taking the average VIP for each variable and 8 

looking at those higher than 80% (that is, of higher importance), this variability is also 9 

reflected in differences among years and crop development stages. Some variables 10 

exhibit a consistent higher VIP% across years for most of the germplasm (Figure 3B), 11 

such as the photoperiod (N) in the early vegetative stages, such as 0 to 3 and 3 to 5. 12 

Factors related to the air temperature such as maximum temperature (T2M_MAX) in 13 

stages 5 to 6, 6 to 7 and 7 to 9, in degree of importance, respectively, seem to play an 14 

important role in the plasticity of the wheat germplasm in India. The temperature range 15 

(T2M_RANGE) is also important for stages 7 to 9. Finally, a related covariable is the 16 

effect of temperature on radiation use efficiency (FRUE), which is highly important for 17 

reproductive stages 5 to 6 and 6 to 7 but has a minor effect during the vegetative stages. 18 

Another important EC is the variables of vapor pressure deficit (VPD) during 19 

reproductive stages (5 to 6), during terminal spikelet formation (3 to 5) and grain filling 20 

to maturity (7 to 8). 21 

The diversity of genotype-specific coefficients (𝜦 matrix, illustrated in Figure 4A) 22 

highlights the problem of selecting environmental covariables that explain G×E. There is 23 

huge variability in signal (positive/negative reaction-norms) and magnitude across 24 

different years and germplasm (as each year has a different set of genotypes). A few 25 

genotypes demonstrate “outliers” in their reaction-norm responses for some specific 26 

factors (extreme blue or red colors). On the other hand, most of the reaction-norms 27 

range from -0.5 to 0.5 (orange to green), but their diversity across diverse development 28 

stages and years suggests the difficulty of selecting a few covariables to really explain 29 

the G×E across years. Because of this, we considered the matrix of all genotype-specific 30 
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coefficients (𝜦 ) to create the R-matrix (Figure 4B). Thus, we observed that this R-matrix 1 

could be a potential secondary source of genetic relationship, which in this case accounts 2 

for the shared reaction norm patterns observed in past field trials. Consequently, this 3 

empirical source of genetic variation could help to model G×E variation when combined 4 

to the conventional G-matrix 5 

This empirical relationship can also be useful to understand the lack of 6 

relatedness between the set of genotypes (wheat lines) in a given year and the whole 7 

breeding germplasm– in this case, the Indian wheat germplasm from CIMMYT (Figure 8 

4C). The set of genotypes evaluated in 2015, for instance, is highly related (blue-purple 9 

colors) to the core germplasm, which can suggest, for example, that this germplasm is a 10 

good training set for predictions across years. On the other hand, the set of genotypes in 11 

2011 is poorly related to the core germplasm (black, red colors), which is a sign of the 12 

lack of genetic relatedness and the differential genetic progress observed in the Indian 13 

TPEs that have shaped (and diverged) the past wheat lines from the more recently 14 

developed germplasm. For prediction purposes, we considered the R-matrix for pairs of 15 

years (or three years, according to the prediction scenario) for running our genomic 16 

prediction analysis. 17 

 18 

Comparison between linear and nonlinear environmental relationships for G×Y 19 

predictions 20 

The average values of predictive ability, measured by the Spearman correlation, 21 

are illustrated for each model and scenario in Figures 5 and 6. As expected, the baseline 22 

model without enviromics (M01) was the worst model for any scenario. The average 23 

predictive ability for this model (horizontal red lines) was very close to 0 (horizontal 24 

black line); below 0 for the analysis considering all TPEs together (Scenarios 1 and 3); 25 

and above zero for those models fitted for each TPE independently (Scenarios 2 and 4). 26 

This result suggests that the definition of TPEs, followed by fitting independent models 27 

for each TPE, is a good strategy when no enviromic data are considered. TPE 2 was the 28 

most predictable without enviromic data, but even in the best scenario, a lower 29 
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predictive ability (r   0.20) was observed, and in most cases, r   0.00 or negative. In 1 

Figure 6B, we present a fair comparison between how frequently the alternative models 2 

outperform M01.  3 

In this study, our goal was to predict a new year, but before going any further, it is 4 

essential to discuss models M02 (conventional linear reaction-norm, Jarquín et al., 2014) 5 

and M03 (nonlinear reaction-norm, Costa-Neto et al., 2021b). On average, these models 6 

outperformed the M01 models in every scenario (Figure 6A), with gains up to +218% 7 

(Scenario 1, M03) and +287% (Scenario 3, M02). For any TPE and scenario, the M02 and 8 

M03 seem to always outperform the M01 in most years, except for Scenario 1 – TPE 3 9 

(M02) and Scenario 3 – TPE 3 where the use of M01 fitted using TPE-specific 10 

environments seems to lead to better results (Figure 6B). Both models are based on the 11 

same W-matrix of covariables (the same used to compute the genotype-specific 12 

coefficients in the PLS 1 step). However, the difference is that one model accounted for a 13 

linear approach for the ERM (correlation based) and the second model considered the 14 

nonlinear approach (Gaussian process for the similarities). Except for Scenario 3 (Figure 15 

5), in all other scenarios the M03 outperformed M02, both in terms of higher mean 16 

(dots) and median (horizontal colorful lines). 17 

Figure 6 indicates that in Scenario 1 (using two years of data in a single model for 18 

all TPEs), the gains compared to M01 observed for M03 ranged from +90% (TPE 2) to 19 

+480% (TPE 1), while for model M02, they ranged from +20% (TPE 2) to +200% (TPE 20 

3). A similar trend was observed for Scenario 2, in which in TPE 2, the M02 was 21 

outperformed by M01 (- 15% reduction), while for the same TPE, the M03 outperformed 22 

M01 by +37%. For Scenarios 3 and 4 (using more than 2 years), the same trend was 23 

observed for those three models, except for TPE 3 in Scenario 3, where M03 was the 24 

worst model. Thus, in general, the use of a nonlinear kernel for ERM (M03) 25 

outperformed the conventional way of using environmental information in genomic 26 

prediction (M02). 27 

  28 
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Accuracy gains when adding EPA as an intermediary step in GBLUP 1 

Looking at only the benchmark models (M01, M02 and M03), the results suggest 2 

that TPE 1 was the TPE that most benefitted by the inclusion of enviromics, irrespective 3 

of the kernel method or envirotyping protocol used. However, when we analyzed the 4 

proposed enviromic-aided strategies (M04, M05 and M06), the gains were outstanding 5 

for most scenarios and TPEs. For example, in Scenario 1 (Figure 5), while M03 achieved 6 

a gain equal to +218% (r =0.18) over M01 (r=-0.05), the replacement of the conventional 7 

𝐖-matrix by the environmental weights from the S-matrix (M04) achieved a gain of up 8 

to +524% (r=0.58). Higher gains from M04 were also observed in Scenario 2 (+82%, r = 9 

0.41), Scenario 3 (+281%, r=0.25) and Scenario 4 (+128%, r = 0.33). Considering the 10 

predictions for each TPE (Figure 6A), model M04 was very effective for predicting the 11 

TPE 3 in most scenarios, with gains due to M01 up to +540% (Scenario 1, r =0.54), 12 

+386% (Scenario 2, r=0.56) and +18% (Scenario 4, r = 0.18); however, there was a 13 

reduction of -6% for Scenario 3 (r=0.16). A negative result was also observed for TPE 2 14 

in Scenario 2 (+12%, lower than other models such as M03) and Scenario 3 (-11%). 15 

Thus, model M04 aggregates benefits and increases accuracy over M03 in most cases; 16 

nevertheless, for some scenarios/TPE, we observed instability in the predictions due to 17 

a lack of correlation relative to the “genetic causes of G×E”, that is, the environmental 18 

weights alone generally help to increase the prediction, but they are not enough to 19 

ensure stability in the predictions across all scenarios and TPEs. 20 

The inclusion of the reaction-norm based matrix (R-matrix, M05) helped solve 21 

these issues in some scenarios and TPEs (Figures 5-6), but it does not always add 22 

accuracy in relation to the standard use of the environmental weights. For example, the 23 

comparison of the observed global predictive ability (Figure 5) for models M04 and M05 24 

showed almost the same gains for the scenarios that included two-year data (Scenarios 1 25 

and 2), but higher gains for scenarios that included more than one year (Scenarios 3 and 26 

4). In this last scenario, the gains over the M01 ranged from +328% (r = 0.28) and 27 

+141% (r=0.27), respectively. The predictions for each TPE (Figure 6A) were also 28 

interesting, achieving the best performance in terms of predictive ability in Scenario 2 29 

for TPE 1 (r= 0.38, +145% over M01) and TPE 3 (r=54, +371% over M01). Another 30 
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interesting comparison can be observed in TPEs 2 and 3 in Scenario 3, with gains 1 

ranging from +10% to +88% compared to -6% to 25% observed for M04. For TPE 1, 2 

however, it seems that M04 and M05 were always better choices for modeling in any 3 

scenario in comparison with M01 (Figure 6B), while M06 seemed to present almost the 4 

same performance despite being a more complex modeling approach.  5 

Finally, model M06 is the combination of the reaction-norm matrix and 6 

environmental weights. In most cases, the models seemed to achieve similar 7 

performance as their predecessors (M04 and M05), but when looking at the variability 8 

of the predictive abilities (size of the boxplots, that is, 25% to 75% quantiles), these 9 

models suggested more consistent predictions across all scenarios (Figure 6B). Model 10 

M06 achieved its highest performance in Scenario 1, with gains ranging from +130% 11 

(TPE 2) to +460% (TPE 1) and +540% (TPE 3). For TPE 3 in Scenario 3 (Fig. 6A), this 12 

model was the best model (r=0.40, +44% over M01), with the potential to achieve 13 

predictive ability values close to r = 0.65.  14 

Resolution of the G×E prediction at the genotype level 15 

The resolution of the G×E prediction was given by the genotype-specific 16 

Spearman correlation between observed and predicted yield values for a future year. 17 

Figure 7 presents these results considering all years (from 2012 to 2018; 2011 is not 18 

considered because it was not predicted). For all models, the differences in the 19 

prediction scenarios affected the resolution of the G×E prediction. The resolution of 20 

M01 (no enviromics) ranged from 3% (Scenario 4) to 35% (Scenario 2). For predicting a 21 

new year based on the previous one, this resolution was equal to 11%. This value means 22 

that the genomic prediction model is capable of adequately predicting the G×E 23 

variations for 11% of the germplasm (the remaining 89% is unpredictable). The 24 

inclusion of enviromics was key for increasing the resolution. For Scenario 1, the use of a 25 

nonlinear kernel for W-matrix (M03) pushed the resolution from 11% (M01) and 25% 26 

(M02) to almost 50% of the germplasm. This same trend was observed for Scenario 4. 27 

However, when a TPE-specific model was fitted (Scenario 2), those three benchmark 28 

models had almost the same proportion of the germplasm predicted (~45%). It should 29 
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be noted that the resolution of the M03 was still the highest one (proportion of blue and 1 

purple colors). In Scenario 3, M02 exhibited the highest resolution, perhaps due to the 2 

fact that the linear kernel adequately captured the phenotype-envirotype association 3 

driving the G×E pattern population set. 4 

The highest resolution was achieved by model M06 in prediction Scenario 1. This 5 

means that in this scenario, we observed the highest predictive ability gain (+559%, r = 6 

0.56, with rmax=0.69) and highest resolution (~95% of the germplasm). This resolution 7 

was drastically reduced in the other scenarios, especially 2 and 3 (inclusion of more than 8 

one year), which suggests that the increase of phenotypic data does not act as a source 9 

for increasing the resolution of G×E. The separation of the models for each TPE using 10 

two-year data (Scenario 2) seems to be a satisfactory strategy for most models, but here 11 

models M04 and M05 outperformed model M06. This suggests that a good adaptability 12 

pedigree within each TPE and a good measure of the within-TPE weights must be useful 13 

for training the models. 14 

 15 

DISCUSSION 16 

In this study, we present results addressing the following topics: (1) how the 17 

enviromics linking EPA studies could leverage the current TPE characterization priors 18 

used to fit TPE specific GBLUP models, while borrowing information within and across 19 

TPEs; (2) how nonlinear kernel methods seem to outperform linear methods in terms of 20 

accuracy; (3) how environment-wide characterizations revealed the differential effect of 21 

the seasonal variations in magnitude, direction and impact of the environmental factors 22 

in the trialing networks across different years, which affects any reaction-norm 23 

estimation; (4) how EPA studies could help the development of reinforcement 24 

algorithms for “learning” how the macro-edaphoclimatic variations affect the 25 

environmental quality for a given trait across historical data sets and ; (5) how the 26 

current cultivar testing pipelines can accommodate these EPA approaches into a 27 

breeder-friendly manner, without adding costs to the current budgets, and as such, add 28 
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value in the decision-making processes of selection and design of more representative 1 

and cheaper trialing networks. 2 

EPA enables environmental characterization and plasticity modeling 3 

In this study we introduced a pipeline for characterizing the similarity among 4 

locations using EPA, envirotyping data and historical yield data. In the summary, our 5 

environment-wide characterization suggests that: (1) soil properties and elevation are 6 

less important for describing the variation across years (average VIP % = 50%, with 7 

maximum average higher importance equal to 60%), which is reasonable when 8 

considering that the main difference observed in environmental conditions is due to 9 

seasonal variations in meteorological variables; (2) the temporal variation of 10 

meteorological factors is key for understanding the similarity among environments, in 11 

which some variables are more important than others due to the crop-specific 12 

developmental stages; and (3) due to the use of diverse statistics for capturing the 13 

distribution of these factors, we observed that median values are not always the best 14 

statistics for describing the distribution and the weight of some environmental factors. 15 

Hence, we posit that the process of selecting covariables is not the ideal situation for 16 

modeling the effects of seasonality across years since the envirotype-phenotype patterns 17 

are not static across years due to seasonal variations in climatic factors and genetic 18 

variations between the different genotypes evaluated in each cycle. Thus, although the 19 

EPA approach was useful in revealing some “environmental signatures” that describe the 20 

major factors affecting the diversity of growing conditions within TPEs, the use of 21 

environmental-wide factors seems to be a more feasible and conservative way of 22 

modeling the similarities among locations in the future. 23 

The EPA analysis of genotypes (reaction-norm modeling) also suggests that the 24 

selection of covariables as part of prediction models could be a contradictory strategy. 25 

While the selection of covariables could increase the accuracy of previous years, which 26 

can be useful for exploratory purposes, it may not be feasible for supporting prediction 27 

models in real-world breeding programs, especially when the goal of these models is the 28 

prediction of future years (new G×Y) where the plasticity of the yet-to-be-seen 29 

genotypes is unknown. This is a consequence of the huge time-scale differences in VIP% 30 
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across years (seasons), germplasm (different genotypes evaluated in different seasons) 1 

and across development stages. Because of this, for further analysis, we advocate using 2 

all envirotyping covariables to create the environmental relationship matrices – and 3 

consequently, the kernel-based reaction norms in genomic prediction. For modeling 4 

reaction-norms, the PLS approach seems to oversimplify the diversity of reaction-norms; 5 

consequently, we suggest that in future studies, nonlinear approaches such as GAM 6 

(Heinemann et al., 2022) be used as an alternative approach. Despite this, the use of PLS-7 

based genotype-specific coefficients of reaction-norm were successful in recovering the 8 

main trends of plasticity and leverage of the genomic prediction for future years in the 9 

historical data sets. This will be discussed in further sections and has been observed in 10 

other applications described by Montesinos-Lopez et al. (2022). 11 

 12 

Linear kernel methods do not capture the nonlinearity among field growing 13 

conditions 14 

The statistical modeling approaches for the analyses of plant breeding in multi-15 

environment trials continue evolving as more data with more complex structure are 16 

being collected in plant breeding programs (Crossa et al., 2021, Teixeira et al., 2011). For 17 

example, diverse sets of methods are available for dealing with multi-dimensional data, 18 

such as the nonlinear approaches that are now being applied for modeling 19 

environmental relatedness using large-scale envirotyping data (Washburn et al., 2021; 20 

Rogers et al., 2021; Westhues et al., 2021; Costa-Neto et al., 2021a,b). Here were 21 

compared the conventional multi-environment GBLUP (M01, no enviromics) and two 22 

reaction-norm GBLUPs, the first using envirotyping data on a conventional linear kernel 23 

(M02, linear W-matrix, Jarquin et al., 2014) and the second using these data on a 24 

nonlinear Gaussian kernel (M03, nonlinear W-matrix, Costa-Neto et al., 2020b). M02 and 25 

M03 assumed that we know the future envirotyping data, but model M03 (nonlinear 26 

kernel) outperformed model M02 (linear kernel) in every scenario tested. This result 27 

agrees with what was achieved in wheat in Australia (He et al., 2019) and tropical maize 28 

in Brazil (Costa-Neto et al., 2021b), in which both the use of nonlinear kernels (Gaussian 29 
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kernel and/or Deep Kernel) were superior to the linear kernel for modeling 1 

environmental relationships from ECs. 2 

From the biological point of view, it seems reasonable to affirm that 3 

environmental covariables are non-additive between each other (Costa-Neto et al., 4 

2021c). Environmental covariables also have higher collinearity and a lack of 5 

orthogonality (Heinemann et al., 2022). Because of this, some studies have added the 6 

step of “variable selection” (e.g., Millet et al., 2019; Westhues et al., 2021; Mu et al., 7 

2020), which could help in to overcome this issue but could cost a loss of information 8 

when trying to predict a yet-to-be-seen GxE, as will be discussed in further sections of 9 

this paper. Here we approached these issues by building non-parametric, nonlinear 10 

environmental kernels, that take into account (leveraged) some phenotypic data as prior 11 

information to adjust bandwidth factors (Costa-Neto et al., 2021b) and that are able to 12 

learn hidden nonlinearities underlying the variations  between the observed macro-13 

environmental influence (from envirotyping) and  the actual phenotypic variation (the 14 

resulted GxE). This “environmental learning” approach is a supervised method that goes 15 

in the same direction of other approaches used for this purpose, such as convolutional 16 

neural networks (Washburn et al., 2021) and gradient boosting machine (Westhues et 17 

al., 2021), but with the benefit of dimensionality reduction as the historical GxE and 18 

reaction-norm patterns are summarized in two simple matrices (𝜸 and 𝜱). 19 

We also observed that nonlinear kernels are better at handling outliers in the 20 

environmental covariables and are also more conservative in building similarity 21 

relations (not covariances). For instance, the Gaussian Kernel for environmental 22 

similarity led to a diagonal matrix (diag(GK) = 1), with off-diagonal effects equal to the 23 

degree of similarity (from 0 to 1) among environments. Considering the lack of similarity 24 

(identity matrix) is the same as assuming that every envirotyping data does not add 25 

value in weighting those similarities. In this sense, a good envirotyping protocol must be 26 

designed and conducted to avoid misspecification of those similarities, while 27 

differentiating the effect of different timescales (e.g., time-windows during crop lifetime, 28 

phenology) according to the crop phenology. For example, there is no sense in using 29 

monthly temperature values to model the growing conditions faced by an annual crop 30 
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such as maize, due to the fact that during 30-day intervals, the crop goes through a wide 1 

number of development stages, and for each one of them, the crop will not face the same 2 

environment due to the differential needs and sensibility to inputs and stress factors, as 3 

evidenced by Rogers and Holland (2022). On the other hand, the use of high-resolution 4 

data, such as an hour-scale, may not aggregate value and moreover, may even be a 5 

source of difficulty that will limit the accuracy of the reaction-norm models (Jarquin et 6 

al., 2020).  7 

However, our results show that even when we maintain the same envirotyping 8 

protocol, the kernel structure choice is key for the successful prediction of G×E. In fact, 9 

the lower accuracy results obtained from linear envirotyping-based ERM in this study, 10 

and in other publications (e.g., Millet et al., 2019; Rogers et al., 2021; Rogers and Holland, 11 

2022) can be attributed to the fact that they fail to reproduce the true quality of the 12 

environment by overestimating or underestimating its quality. For this reason, data 13 

analysts should dedicate efforts towards developing a diverse set of “environmental 14 

markers” that can be globally used for a certain species or that are germplasm specific. 15 

These markers must be designed and tested to account for actual plant ecophysiology 16 

interactions, which can be computed by crop growth models or using frequencies of 17 

occurrence of environmental typologies (Costa-Neto et al., 2021c), which in both ways 18 

can be leveraged by using environmental-phenotype association when historical 19 

databases are available for it, especially when we want to predict future growing 20 

conditions based on past priors. 21 

 22 

TPE-specific models do not ensure higher accuracy in G×Y predictions 23 

TPE characterization is a key for reconciling breeding goals and expectations with 24 

the actual structure available to support the screening for genotypes as candidate 25 

cultivars. This also provides information to check the representativeness of the current 26 

experimental network – and, sometimes, highlights key aspects to optimize it. One of 27 

these key aspects is implied directly in the design of strategies for crossing and selecting 28 

more adapted genotypes for key growing conditions, which leverages the genetic gains 29 

and ensures the efficiency of the breeding program, allowing breeders to focus on other 30 
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breeding goals – that is, secondary traits, such as nutritional quality. Thus, it is a 1 

sustainable way to measure the quality of the germplasm for specific growing 2 

conditions, and consequently, to better deal with future extreme events, such as climate-3 

change panels around the world. Thus, the envirotyping protocols are now integrated 4 

into breeding and post-breeding pipelines as a “thermometer of the germplasm 5 

adaptation”, by showing the potential phenotypic landscapes (Messina et al., 2018; 6 

Costa-Neto et al., 2021a) and for providing evidence about how the environment could 7 

affect past genetic gains (Heinemann et al., 2019; Cooper et al., 2021), as well as the 8 

actions that must be taken to achieve the breeding goals in upcoming years (Elli et al., 9 

2020). In this context, envirotyping data, historical data or simulated data from crop 10 

growth models have been used to clearly define the limits of each TPE in breeding 11 

programs and, as a result, this prior information can be used to control (or exploit) the 12 

G×E patterns within homogeneous growing conditions (Windhausen et al., 2012; 13 

Crespo-Herrera et al., 2021). 14 

The G×E interaction is a key property of the experimental network, and its 15 

magnitude and nature depend on the diversity of the experimental network (Costa-Neto 16 

et al., 2021c;). This was successful in reducing the crossover G×E interaction when 17 

targeting cultivars and borrowing information across countries for training genomic 18 

prediction (Crespo-Herrera et al., 2021). However, for the prediction of new G×Y, our 19 

results suggest that models without the division of TPEs favor the EPA study, as the 20 

amount of screened growing conditions for each genotype ensures better estimation of 21 

the reaction-norms. In addition, the increased number of observed environments also 22 

provides a better estimation of the environmental weights, which favors the enviromic-23 

aided models. The use of a particular model for each TPE favored the classic 24 

conventional multi-environment GBLUP (M01) (as expected, models M02 and M04 in 25 

most cases). However, the accuracy gains achieved by the models accounting for 26 

enviromic-aided pedigrees were much higher, for it was observed that accuracy gains 27 

were nearly 1,000%; there were also higher resolution gains. 28 
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Since our data set is highly unbalanced across years, we failed in testing to see 1 

whether replication of certain genotypes across years, for a specific TPE, can be useful to 2 

optimize cross-TPE predictions over different years. Thus, it is possible that using TPE-3 

specific phenotypes, while accounting for replications of genotypes across years, could 4 

be a good balance between the optimization of independent phenotyping efforts within 5 

each TPE and an accurate Envirotype-to-Phenotype Association (EPA) analysis, which is 6 

the basis of the enviromics-aided pedigrees. In addition, as observed in other studies in 7 

maize (Costa-Neto et al., 2021b), it is possible that not every phenotype data point is 8 

useful to aggregate information in genomic prediction – in fact, sometimes this is one 9 

source of difficulty that causes predictive ability losses. Then, the use of multi-year data, 10 

under unbalanced conditions, might not contribute at all.  11 

For some years, the lack of similarity present in the 𝐑 matrix also partially 12 

reflects the lack of accuracy. In the years 2012 and 2016, even when considering more 13 

phenotyping data (across years and TPEs), the observed predictive ability was low for 14 

most of the models. 15 

 16 

Association studies between envirotyping data and phenotypic variation helps for 17 

dealing with the uncertainty of future G×Y 18 

The use of historical yield data accomplished with long-term envirotyping is the 19 

basis for understanding how the environmental factors (meteorological, soil, biotic 20 

factors), across the plants’ lifetime, affects the end-result phenotype of interest. As such, 21 

the field of the Envirotype-Phenotype Association (EPA) can approach this uncertainty, 22 

by reverting to past studies on factorial regression (e.g., Hardwick and Wood, 1972; 23 

Denis, 1988; Costa-Neto et al., 2021a) and partial least squares (Vargas et al., 1999; 24 

Porker et al., 2020) to provide a more realistic descriptor of the environmental impacts 25 

on the experimental network. As each experimental network is composed of genotypes 26 

and environments, two types of analysis were proposed in this study: (1) the search for 27 

descriptor adaptability by estimating the empirical reaction-norms of the genotypes 28 
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tested in the past; (2) measuring the weights of each environmental factor in driving the 1 

relatedness and diversity among field trials (or locations across years).  2 

The first approach focused on identifying a possible “population structure” for 3 

reaction norms, that is, to summarize the impact of the historical plasticity patterns 4 

shared by the genotypes, which can be used as an additional genetic relationship matrix 5 

(GRM) for multi-environment predictions. The second is a new way to implement a 6 

weighted environmental relationship matrix (ERM), which is capable of accommodating 7 

past and future environmental covariables for predicting the expected “phenotypic 8 

similarity” for a given trait. Then, for the latter, different weights of each environmental 9 

factor should be achieved for different traits of the same genotype – which means that 10 

we can directly relate the quality of the growing conditions with the trait expression, 11 

translating the theoretical putative environmental influence on actual impact on the trait 12 

performance of the genotypes. Finally, a third “G×E pedigree” is born by combining the 13 

previous approaches, which result in a G×E kernel considering reaction-norms 14 

(genotype-specific coefficients), genetic relationships (from pedigrees or molecular 15 

markers), field-trial (or location)-specific weights for each environmental factor and 16 

observed covariables in past field trials. This last option is a more parsimonious manner 17 

of integrating different data sources capable of explaining the G×E variation for a given 18 

trait, at a given experimental network or breeding region. For this last application, it 19 

seems that a successful approach that follows a similar philosophy is the use of self-20 

organizing maps (SOM) to identify genotype-specific responses for key environmental 21 

types combining historical yield and envirotyping data (Bustos-Korts et al., 2022). 22 

Here, it was demonstrated that the conventional multi-environment GBLUP 23 

(M01, no enviromics) has poor resolution in explaining genotype-specific G×E variations 24 

for future years. As these models only accounts for genotypic covariates (G-matrix), and 25 

not any other environmental information, this result is not a surprise. Conversely, our 26 

results suggest that the approaches (M04, M05 and M06) are cost-effective and 27 

biologically accurate ways to correct this issue, with the benefit of better exploring the 28 

cross-TPE and cross-season phenotypic data for training the GP models. Furthermore, 29 

the models M04-M06 aims to capture the historical background of seasonality variations 30 
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by modeling the plasticity (reaction-norm matrix) of relatives while measures the actual 1 

weights of the envirotyping information in the phenotypic variation. Thus, this is an 2 

evolution of the conventional way to use raw environmental data to shape the similarity 3 

among locations. 4 

A key point of our study was the development of the EPA-weighted location 5 

similarity matrix (𝜱), used by itself (M04) or combined with other enviromic-aided 6 

approaches. The ERM derived from this matrix is modeled by nonlinear GK, bringing all 7 

the benefits of this approach, as already discussed in the last section. Perhaps an 8 

interesting point of this matrix is that it can always be updated (every year) and can also 9 

include new testing sites. For example, if we don’t have any phenotypic data for a new 10 

location (that is, we don’t have matrix 𝜱0 considering this new location, Eq. 11), then 11 

we can still use the long-term envirotyping data for a new j location, assuming the 12 

weights for the m environmental covariables of this location as 𝝋𝒋  1𝑚
𝑇

, while the 13 

observed  r location carries its specific weights computed by Eq. 11 using the data of the 14 

past experimental network; then 𝝋   𝝋𝒓, 𝝋𝒋  . This is a feasible and practical 15 

approach capable of using the outputs of the EPA analysis to unlock the avenue for 16 

predicting the expected phenotypic correlation for a new testing location. Finally, here 17 

we used a Hierarchical Bayesian approach, and the results demonstrated that the use of 18 

the kernels (𝑲𝑮, 𝑲𝑬 and 𝑲𝑮𝑬) can be easily adapted for other computational platforms, 19 

such as convolutional neural networks (CNN) or assembly methods such as gradient 20 

boosting machine. Thus, a generic representation of a multi-environment genomic 21 

prediction could be given by 𝒚  𝑓(𝑲𝑮, 𝑲𝑬, 𝑲𝑮𝑬)  𝜺,in other modeling forms, just 22 

considering markers (SNP) and supervised EPA-based outcomes, such as: 𝒚  23 

𝑓(𝑆𝑁𝑃,𝝋,𝜦)  𝜺. 24 

  25 
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Environmental-Phenotype Association act as a reinforcement algorithm in 1 

recycling information from historical trialing networks 2 

Finally, we can suggest a pipeline that combines our results with other 3 

approaches. For example, from the same multi-environment trial data we can follow two 4 

pathways. The first pathway is the “genotype analysis” based on the process of PLS 1 5 

(univariate PLS for modeling the reaction-norms). This process has led to different 6 

purposes, but mostly to the estimation of the genotype-specific coefficients that can be 7 

part of cultivar targeting (e.g., Porker et al., 2020; Costa-Neto et al., 2021a), which could 8 

also be used as a strategy for reducing the dimensionality in genome-wide studies across 9 

multiple environments. For the latter, the use of the “reaction-norm coefficients” as a 10 

“trait” for genome-wide association studies (Li et al., 2021; Mu et al., 2022) cold help to 11 

understand the interplays between genomics and phenotypic plasticity. Here we 12 

introduce the reaction-norm matrix (R matrix) as containing “markers” of the plasticity 13 

patterns observed in past evaluated genotypes. Thus, instead of using a large data base 14 

of phenotypes from genotype x environment combinations, we can add the same 15 

information by recycling the past reaction-norms into an intuitive and synthetic matrix 16 

of “plasticity markers” (phenotype ~environment variation associations).  17 

The second pathway is the “environmental analysis”, which is based on the PLS 2 18 

algorithm (multivariate PLS for modeling environmental weights). This approach is 19 

useful in creating more accurate ERM, which could be used to improve the accuracy of 20 

GP but also for identifying key environments and optimizing multi-environment trial 21 

efforts, which consequently could also extend the range of applications of the predictive 22 

analytic pipelines due to the possibility of better predicting the quality of some future 23 

environment. This last application can be used, for example, not only in the first multi-24 

environment trial evaluations in breeding pipelines, but also in post-breeding stages 25 

aimed to support the decision about which locations are more likely to be successful as 26 

seed production fields, which is a key logistic aspect for multiplying seeds of the 27 

candidate cultivars.  28 

Nonetheless, it is important to highlight two key aspects. First, every reaction-29 

norm is just a sample of the possible reaction-norms that a certain genotype could 30 
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experience due to its potential genetic-defined plasticity (Costa-Neto et al., 2021c), that 1 

is, a “snapshot” of its potential phenotypic plasticity as this reaction-norm coefficient is 2 

dependent on the diversity level of the MET and how it can represent the actual TPE. 3 

Because of this, some GP/GWAS models accounting for reaction-norms could have noise 4 

related to the limiting environmental diversity that genotype experienced in the past. 5 

Thus, in the step of reaction-norm computation, the use of large historical data sets is 6 

key to reduce this possible bias. Secondly, but not less important, to work as 7 

reinforcement learning, this approach should be conducted after every year of trialing, 8 

where each new EPA is inserted into the data base and reaction-norms/environmental 9 

weights are fine-tuned.  10 

 11 

CONCLUSIONS 12 

The effect of climate seasonality and the differences in the genetic constitution of 13 

the populations evaluated in different years makes difficult the prediction of G×E 14 

without any additional information. In this study we proposed a novel framework 15 

capable to recycle the historical data and use it to leverage prediction accuracy of the 16 

conventional GBLUP methods (with and without reaction-norms) for a new year. To be 17 

able to capture the essential patterns of the G×E signal, the key was to use the partial 18 

least square algorithm as a first step, that is, as an “environmental learning way” for 19 

modeling reaction-norms from the past evaluated genotypes, while computes how the 20 

environmental factors impacts on the phenotypic correlation across multiple locations. 21 

The first provided to us an empirical “reaction-norm matrix” (R-matrix), who was used 22 

as secondary source of genetic variation, while the latter provided the “environmental 23 

weight” matrix aimed to replace the direct use of envirotyping data for unsee years. We 24 

call this approach as “Environment-Phenotype Associations (EPA)” since it captures the 25 

essentials of G×E information from historical breeding data, to be able to use this refined 26 

information in the prediction models. 27 

Then, in a second step, both outcomes were parsimoniously integrated in the 28 

multi-environment GBLUP models with which the predictions of unseen year or 29 
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environments were finally performed. This led to a biological enrichment of the genetic 1 

and environmental relationship matrices (GRM, ERM), and consequently the G×E 2 

structures, without increasing model complexity and dimension. The G×E signal was 3 

better accounted for, while the noise contained in both environmental and marker data 4 

was at least partially removed.  New models computing environmental weights and 5 

envirotyping data to model ERM, while considering a mix of G-matrix and R-matrix for 6 

modeling GRM, seems to increase the ability to explain the past while increases accuracy 7 

for the future. Using CIMMYT’s multi-year wheat data, our approach outperformed the 8 

conventional methods considering only genomic information under a multi-environment 9 

GBLUP context, as well its expansion using envirotyping data (reaction-norm GBLUP). 10 

During this process, as observed by other authors, we observed that the use of nonlinear 11 

kernels for modeling environmental relationship matrices outperform the state-of-art 12 

considering linear covariances. Thus, all EPA outcomes were also modeled as nonlinear 13 

kernels.  Additionally, we observed that because of the seasonality, any strategy for 14 

variable selection using envirotyping data may lead to a loss of information and a 15 

prediction bias.  Conversely, our framework takes advantage of all envirotyping data 16 

possible, while captures linear and nonlinear patterns since it was implemented under a 17 

mix of linear and nonlinear kernels. This also resulted in the possibility of identifying 18 

which locations are the most important for designing future METs. Finally, we encourage 19 

more empirical evaluations using our proposed framework to provide more empirical 20 

information about its advantages and disadvantages.  21 

Data availability 22 

Data and codes for EPA analysis and for creating the matrices and genomic predictions are 23 

available at https://github.com/gcostaneto/EPA-PLS. Additional R codes not necessary to 24 

perform the analysis are available upon request from the first author. 25 
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Table 1. Modeling assumptions for each kernel (𝑲𝑮, 𝑲𝑬 and 𝑲𝑮𝑬) and model (M01-16 

M06). Details about each genetic (𝑮,𝑯,𝑹) and environmental relationships (𝜴, 𝜸,𝜱) are 17 

given in the following sections.   denotes the Kronecker product.  18 
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Figure 1. Environmental characterization of the CIMMYT’s Indian locations using EPA 1 
analysis covering the seasonal effects across 36 locations over the years between 2011 2 
and 2018. (A) Summary of the relative variable importance on projection (VIP) in defining the 3 
environmental similarity across locations, considering the main environmental variables and 4 
development stages (panels) after quality control.  A horizontal solid line indicates the threshold 5 
of VIP % = 85%, which corresponds to the absolute value relative to the 95% of probability in 6 
the distribution of computed VIP values.  (B) Principal component analysis and clusters found by 7 
the Ward Algorithm using the environmental weight as covariables; (C) Environmental 8 
signature of each group found considering the environmental weights ECs with VIP > 85%. 9 
Details about the signatures for all ECs are given in Supplementary Figure S2. Environmental 10 
weights equal to 1.0 (horizontal solid line) denote that the given EC is not weighted by EPA. Each 11 
dot represents the actual weight of the respective EC for a given a location within the group. The 12 
smooth line represents the overall trends considering the key drivers (red dots found in the 13 
label A). 14 

 15 

Figure 2. Diagnosis of the environmental diversity observed within each cluster of 16 
locations found in this study for CIMMYT’s wheat trials in India. (A) Relative similarity 17 
between each location and its pivot-locations within each cluster.  Each pivot was selected by the 18 
clustering analysis of the environmental weights from the EPA analysis using the multivariate 19 
PLS 2 algorithm. (B) General overview of the representativeness of the multi-environment trial 20 
(MET) network in India for each season (year). Values above (n=3, n=4, etc.) indicate the number 21 
of pivot locations considered in each year. Red colors denote the proportion of essential 22 
locations (pivot) in each year. Blue colors denote the proportion of environments somehow 23 
related to some pivot (similarity >= 95% with the pivot), using as threshold 95%. Gray colors 24 
denote the proportion of environments considered to represent the diversity of the MET.  25 

 26 

Figure 3. Distribution of the relative variable importance in projection (VIP, %) from the 27 
PLS 1 analysis for each genotype considering each envirotyping covariable 28 
(environmental factor x development stage) and years between 2011 and 2018. (A) detail 29 
of VIP distribution considering all genotypes and detailing for each year and development stage. 30 
(B) general overview considering all years. The vertical red line denotes the VIP = 80%. Blue 31 
denote those variables with higher importance (VIP > 80%) for the given year/development 32 
stage combination. 33 

 34 

Figure 4. Characterization of the reaction-norms the subsequent similarity of the 35 
plasticity patterns for CIMMYT’s wheat germplasm in India. (A) panel of genotype-specific 36 
coefficients for each genotype (columns) and envirotyping covariables (rows) across from the 37 
EPA analysis over the G+GE effects across years; (B) genetic similarity (gaussian kernel) of the 38 
empirical plasticity computed from the reaction-norm coefficients treated as “plasticity 39 
markers”. (C) patterns of similarity between the germplasm tested in a given year (from 2011 to 40 
2018) and the all germplasm (n=360). 41 
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Figure 5. Predictive ability for grain yield considering each statistical model and 1 
prediction scenario of G×Y between 2011 and 2018 in India. (A) Scenario 1, considering all 2 
TPEs together and a pair of years (the previous year as the training set, the following year as the 3 
testing set). (B) Scenario 2, considering all TPEs together and three sets of years (pairs of 4 
subsequent previous years as the training set, a single following year as the testing set). (C) 5 
Scenario 3, for each TPE, considering a pair of years (the previous year as the training set, the 6 
following year as the testing set). (D) Scenario 4, for each TPE, considering three sets of years 7 
(pairs of subsequent previous years as the training set, a single following year as the testing set). 8 
The white points within each boxplot represent the average value (mean), while the horizontal 9 
lines represent the median (quantile 50%). Vertical lines denote the reference of not 10 
predictability (null predictability = 0, dashed black line) and the reference of the average 11 
predictability in terms of the Spearman rank correlation of the baseline model (M01, no 12 
enviromics, red line). Percentage values above each boxplot represent the average gain/loss in 13 
predictive ability in relation to the baseline M01 14 

 15 

Figure 6. Summary of the TPE-specific predictions considering the years between 2011 16 
and 2018 in India. (A) Average predictive ability (PA) for grain yield for each statistical model 17 
and prediction scenario. Vertical lines denote the reference of not predictability (null 18 
predictability = 0, dashed black line), average predictive value for each panel and TPE, 19 
considering all models (solid black lines), and the reference of the average predictability of 20 
baseline model (M01, red line). (B) head-to-head relative frequency of the PA superiority of each 21 
model (M02-M06) over the baseline GBLUP (M01) across years, with “better than M01” (green 22 
colors) indicating how many times each one of the tested models (M02-M06)  outperformed 23 
M01 and “worst than M01” (red color) relating on how many times the M01 was the winner 24 
model. 25 

 26 

Figure 7. Resolution of the genomic prediction models for each scenario tested. (A) 27 
heatmap of the spearman’s rank correlation for each genotype in prediction Scenario 1. (B) 28 
Resolution in terms of the distribution frequency of predictability for Scenario 1. (C) Heatmap of 29 
Spearman’s rank correlation for each genotype in prediction Scenario 2. (D) Resolution in terms 30 
of the distribution frequency of predictability for Scenario 2. (E) Heatmap of Spearman’s rank 31 
correlation for each genotype in prediction Scenario 3. (F) Resolution in terms of the distribution 32 
frequency of predictability for Scenario 3. (G) Heatmap of Spearman’s rank correlation for each 33 
genotype in prediction Scenario 4. (H) Resolution in terms of the distribution frequency of 34 
predictability for Scenario 4. 35 

 36 

Appendix 1: PLS for EPA 37 

PLS regression is a technique used to combine the benefits of conventional 38 

ordinary least squares (OLS) and principal component analysis (Aastveit and Martens, 39 

1986). Thus, it is useful for both predictive and exploratory analyses. Another important 40 

use of PLS analyses relies on the integration of environmental information in systems 41 
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biology (Teixeira et al., 2011) and G×E analysis, this latter as an alternative to deal with 1 

the higher and natural collinearity of environmental factors and explain possible 2 

environmental causes of adaptation (Vargas et al., 1999; Monteverde et al., 2019; Porker 3 

et al., 2020).  In fact, the first mention of “enviromics” used this technique to support 4 

“reverse engineering” of the genomic features related to the dynamics within the cell 5 

environment (Teixeira et al., 2011). Due to its popularity and simplicity, we chose this 6 

approach to perform the so-called Envirotype-Phenotype Association (EPA) in two 7 

ways: (PLS 1) to estimate “adaptability descriptors” of the genotypes, that is, genotype-8 

specific coefficients for each genotype and environmental factor; and (PLS 2) to extract 9 

weights of environmental diversity, that is, associating environmental factors and the 10 

observed phenotypic-based similarity between environments. For both purposes, a 11 

generic representation of the PLS model is given below and its particular use in 12 

supporting the development of “enviromic-aided pedigrees” will be discussed in the next 13 

sections. 14 

In the PLS algorithm, a matrix of predictors (X, q environments × m variables) is 15 

decomposed into three matrices: (1) a matrix of scores (T) (referred to as X-score), (2) a 16 

matrix of loadings (𝑷 
, X-loading, m × a) and (3) the residuals of this decomposition (C); 17 

thus: 18 

                                𝑿  𝑻𝑷  𝑪                                                           (Eq. 1, Appendix) 19 

Simultaneously, the matrix of responses (Y) is decomposed into the three 20 

matrices of Y-scores (U matrix), Y-loadings (Q′ matrix), and the Y-residuals (denoted 21 

here as F); thus: 22 

                              𝒀  𝑼𝑸  𝑭                                                           (Eq. 2, Appendix) 23 

To estimate adaptability descriptors (PLS 1), we adopted the univariate PLS 24 

approach, considering the vector of phenotypes for each genotype (Y assumed as a 25 

vector of environmental-centered values for each genotype at each q environment × 1) 26 

of all observations across all test environments. In a certain way, this is a site-regression 27 
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approach (SREG) (Crossa and Cornelius, 1997), where the main genetic effect plus 1 

genotype-specific G×E variation (G+GE) were attributed to the y vector.  Here we are 2 

interested in modeling the combination of broad genetic effect (model intercept) plus a 3 

GE in terms of reaction-norms (Costa-Neto et al., 2020). To implement this, each model 4 

accounts for an independent single-genotype variation analysis over a matrix of 5 

environmental descriptors (𝑾-matrix for environments, with q environments × k 6 

covariables). More details are given in the description of M05 in Genomics Prediction 7 

section. 8 

On the other hand, for extracting the weights of environmental diversity, we 9 

considered the multivariate PLS approach (Y as a matrix, with dimension q × q, here q = 10 

number of locations), associating the long-term environmental descriptors for a given 11 

location (here a W-matrix for locations, with q locations × k covariables), and a matrix 12 

of phenotypic-based environmental similarity (S0-matrix) for each location. More details 13 

are given in the description of M05 in Genomics Prediction section. 14 

In summary, the PLS algorithm aims to minimize the observed norm of F, while 15 

looking to maximize the correlation between X and Y by the inner relation U=TD, where 16 

D is a diagonal matrix. Consequently, the X-scores are orthogonal, assuring the control of 17 

collinearity among the original X predictors. This process results in the estimation of 18 

linear combinations of the original variables, computed from a matrix of weights (L), 19 

with a dimension of a × b, where a is the number of rows in the X matrix and b is the 20 

number of components (latent vectors) considered, with T=XL. Finally, the linear 21 

coefficients to relate X and Y (referred here as B) are computed by using the iterative 22 

relation: 23 

(1): 𝒀  𝑼𝑸𝑻  𝑭 

( ): 𝒀  𝑻𝑫𝑸𝑻  (𝑷𝑸𝑻  𝑭) 

(3): 𝒀  𝑻𝑲𝑻  𝑭  

(4): 𝒀  𝑿𝑳 𝑲𝑻  𝑭  
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(5): 𝒀  𝑿𝑩  𝑭  

Thus, in summary, 1 

𝒀  𝑿𝑩  𝑭                                                                           (Eq. 4)  2 

where the matrix of coefficients is computed by 𝑩  𝑳𝑲𝑻 , and 𝑭  is the residual 3 

variance in Y not captured by the core of latent vectors (hereafter called LV). Here we 4 

adopted the nonlinear iterative partial least squares (NIPALS) algorithm to sequentially 5 

extract the PLS components. Details on the NIPALS algorithm can be found in Palermo et 6 

al. (2009) and Sanchez (2012). 7 

 8 

Appendix 2: Genomic Prediction Models 9 

In the Appendix Table A1 we presented a summary of all genomic prediction 10 

models in terms of basic data input (genomics, enviromics), its adoption or not of EPA 11 

outcomes, which relationship matrices were considered and the kernel assumptions.  12 

 13 

Appendix Table A1: Detailed model assumptions considered in this study. 14 

 Model 

M01 M02 M03 M04 M05 M06 

Basic Data Input 

Marker/ SNP x x x x x x 
Envirotyping   x x x x x 

Environmental-Phenotype Associations (EPA) 

EPA: PLS1 - Reaction-norms ( )     x x 
EPA: PLS2 - Environmental Weights ( )    x x x 

Relationship Matrices 

Genomic Relationship Matrix (G) x x x x x x 
Genotype-Specific Reaction-Norm (R)     x x 
Identity environmental relationship (ERM, 
  ) 

x      

Linear ERM using W-matrix ( )  x     
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Nonlinear ERM using W-matrix ( )   x    
Nonlinear ERM using env. weights ( )    x x  
G-matrix weighted by reaction-norms ( )     x  
Past G×E (historical data set) by            x 
Future (expectation) of G×E by            x 

Kernels assumptions for   ,    and     

   (    )  x x x x x x 

   (     )  x      

   (    )   x     

   (    )    x    

   (    )     x x x 

    (    )  x      

    (   )   x     
    (    )    x    
    (    )     x   

       (    )      x  

     (     ,     ) [Eq 12]      x 

 1 

 2 

 3 

 4 

  5 
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