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Abstract
The profit function (net returns minus costs) allows breeders to derive trait economic

weights to predict the net genetic merit (H) using the linear phenotypic selection

index (LPSI). Economic weight is the increase in profit achieved by improving a

particular trait by one unit and should reflect the market situation and not only pref-

erences or arbitrary values. In maize (Zea mays L.) and wheat (Triticum aestivum)

breeding programs, only grain yield has a specific market price, which makes appli-

cation of a profit function difficult. Assuming the traits’ phenotypic values have

multivariate normal distribution, we used the market price of grain yield and its con-

ditional expectation given all the traits of interest to construct a profit function and

derive trait economic weights in maize and wheat breeding. Using simulated and real

maize and wheat datasets, we validated the profit function by comparing its results

with the results obtained from a set of economic weights from the literature. The crite-

ria to validate the function were the estimated values of the LPSI selection response

and the correlation between LPSI and H. For our approach, the maize and wheat

selection responses were 1,567.13 and 1,291.5, whereas the correlations were .87

and .85, respectively. For the other economic weights, the selection responses were

0.79 and 2.67, whereas the correlations were .58 and .82, respectively. The simu-

lated dataset results were similar. Thus, the profit function is a good option to assign

economic weights in plant breeding.

1 INTRODUCTION

The linear phenotypic selection index (LPSI) is a linear com-
bination of observable random trait phenotypic values (y, i.e.,
𝐼 = 𝛃′𝑦). According to Hazel et al. (1994), the LPSI allows

Abbreviations: AD, anthesis day; BLP, best linear predictor; EH, ear
height; FIRA, Fideicomiso Instituido en Relación con la Agricultura; GY,
grain yield; HD, heading; LPSI, linear phenotypic selection index; MLE,
maximum likelihood estimator; MOI, moisture content; PH, plant height;
QT, quantitative trait; QTL, quantitative trait locus.
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breeders to select and jointly improve several traits that differ
in additive variability, heritability, economic importance, and
in the correlation among their phenotypes and genotypes in
plant and animal breeding. Similarly, the net genetic merit (H)
is a random unobservable linear combination of true breeding
values (g) of the traits weighted by their respective eco-
nomic weights (w, i.e.,𝐻 = 𝐰′𝐠), and when the phenotypic
and genotypic covariance matrices are known, the LPSI is the
Best Linear Predictor (BLP) of H (Cerón-Rojas & Crossa,
2022; Cochran, 1951; Searle et al., 2006; Teunissen, 2007).
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2 CERÓN-ROJAS ET AL.Crop Science

The main LPSI objectives are to predict H, maximize the LPSI
selection response, and the correlation between H and LPSI.
When the population means of H and y are zero, the selec-
tion response is the conditional expectation of H given LPSI
(Cerón-Rojas & Crossa, 2022; Cochran, 1951). The size of
the estimated LPSI selection response and the estimated cor-
relation between H and LPSI are the main criteria to validate
and compare the efficiency of any LPSI in plant and animal
breeding.

The main assumptions of the LPSI theory are: (a) vector g is
composed entirely of the additive effects of genes; (b) H is the
total individual genotypic economic value; and (c), the y and
H values have a joint multivariate normal distribution. Based
on these assumptions, the LPSI is the conditional expectation
of H given y (Cerón-Rojas & Crossa, 2022; Cochran, 1951),
and to predict H we need to estimate the LPSI vector of coeffi-
cients (β) so that the estimated LPSI values may discriminate
those individuals with the highest H values (Smith, 1936).
Currently, a linear selection index can be a linear combination
of marker scores and phenotypic values (Cerón-Rojas et al.,
2008; Lande & Thompson, 1990), genomic estimated breed-
ing values (Cerón-Rojas et al., 2015; Cerón-Rojas & Crossa,
2019), and phenotypic and genomic estimated breeding values
jointly (Cerón-Rojas & Crossa, 2018, 2020a, 2022; Dekkers,
2007).

The trait economic weight is the increase in profit (net
returns minus costs) achieved by improving a particular trait
by one unit while the others remain fixed (Charffeddine &
Alenda, 1998; Blasco, 2021). It should reflect the market sit-
uation and the marginal benefit from one unit of improvement,
as opposed to just preferences or simply arbitrarily fixed val-
ues (Magnussen, 1990). Strain and Nordskog (1962) proposed
using a profit function to integrate the costs and benefits of a
breeding program and compare the profitability of lines and
crosses. Later, Moav and Moav (1966), and Moav and Hill
(1966), used the partial derivatives of the profit function (eval-
uated in the trait’s mean) as economic weights for within-line
selection.

The profit function depends on the traits of interest, the
market prices of the traits, the production technology, and
market conditions (Charffeddine & Alenda, 1998). An addi-
tional feature of profit functions is they may be linear or
non-linear. Although a non-linear profit function can be a
function of phenotypic values of individual plants or a func-
tion of population means, the linear profit function is one of
the phenotypic trait values of individual plants or animals
(Itoh & Yamada, 1988). Nevertheless, an LPSI can still be
used for a non-linear profit function, although the optimum
index depends on the selection intensity and the number of
generations over which the selection response is to be max-
imized. According to Goddard (1983), an LPSI achieves the
greatest increase in profit when the profit function and eco-
nomic weights are not linear. Thus, an LPSI will always

Core Ideas
∙ LPSI is the best linear predictor of the net genetic

merit .
∙ The main LPSI objective is to predict the net

genetic merit and maximize the selection response.
∙ The profit function allows breeders to derive trait

economic weights to predict H.
∙ Economic weight is the increase in profit achieved

by improving a particular trait by one unit.

give the optimum selection response for linear and non-linear
profit functions.

Conditions for applying the profit function theory are:
(a) changes in profit function should be due to changes in H
and not to environmental conditions or changes in technology;
(b) prices and costs are constants; and (c) because the genetic
gains in each cycle are low, a linear approach to the profit
function is recommended (Charffeddine & Alenda, 1998).
In this context, the net genetic merit, the estimated LPSI
selection response, and the estimated LPSI values should be
interpreted in terms of economic gains and costs (Blasco,
2021).

In this research, we describe a profit function to obtain
economic weights in the maize (Zea mays L.) and wheat
(Triticum aestivum) breeding context. Contrary to animal
breeding, where the traits of economic interest have a specific
price on the market, in maize and wheat breeding only grain
yield has a specific market price, which makes it difficult to
apply a profit function and obtain economic weights. For this
reason, the proposed profit function is based on grain yield
market price and on the regression coefficients of grain yield
on all the associated traits. In this manner, the grain yield
market price is distributed over the other traits as a product
of price and the regression coefficient of each trait associated
with grain yield. Using seven simulated maize datasets and
one real maize and wheat dataset, we validated the profit
function by comparing its results with the results obtained
from a set of economic weights taken from published lit-
erature (Cerón-Rojas et al., 2015; Cerón-Rojas & Crossa,
2019, 2020a, 2020b). The criteria to validate the proposed
profit function were the size of the estimated LPSI selection
response and the estimated correlation coefficient between
LPSI and H. For the simulated and real datasets, we found
the profit function described in this work is a good option to
assign economic weights in maize and wheat breeding.

As we shall see later, the approach to the profit function
theory described in this study is a mathematical formaliza-
tion of Smith’s (1936) idea to assign economic weights to
the traits of interest in the wheat breeding context. Finally,
the results obtained in this study are the first to use a profit
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CERÓN-ROJAS ET AL. 3Crop Science

function to derive economic weights in maize and wheat
breeding. A short review of the LPSI theory is provided in
the Appendix.

2 MATERIAL AND METHODS

2.1 Methods

2.1.1 The Smith (1936) idea for assigning
economic weights in wheat breeding

Consider in a wheat selection program we consider the vec-
tor y’ = [Y1. . .Yt] of t traits, where Y1 denotes grain yield, Y2
baking quality, Y3 resistance to flag smut, and so forth. We
can evaluate Y2 and Y3 in terms of Y1 as follows. Supposing
an advance of 10 in the baking score is equal in value to an
advance of one bushel per acre in yield, and that a decrease
of 20% infection is worth one bushel of yield, then, taking
𝑌1 as a standard and units as indicated,w1 = 1.0, w2= 0.1,
and w3= −0.05 will be the economic values of each trait.
This is the Smith’s (1936) idea for deriving economic weight
in wheat breeding programs. Now, let y’−1 = [Y2. . .Yt] be
a vector of t−1 traits that does not include Y1 and assume
that Y1 is the dependent random variable, whereas y′−1 is
the vector of random explanatory variables. To derive eco-
nomic weights for maize and wheat breeding, we will adapt
the above-mentioned Smith’s idea to the multiple regression
context, that is, Y1 = b0 + b’y−1 + e (where e has normal dis-
tribution, null expectation, and variance, σ2𝑒), using the profit
function and the regression theory.

2.1.2 The cost function

Let a1, a2, . . . , aN be the N input prices or costs of the N input
variables X1, X2, . . . , XN such as fertilizers, number of culti-
vated hectares, number of workers per hectare, worker wages
per hectare, etc.; then, the cost function is:

𝐶 = 𝐶0 + 𝑎1𝑋1 + 𝑎2𝑋2 +⋯ + 𝑎𝑁𝑋𝑁 (1)

where C0 is the fixed cost in the plant breeding program.

2.1.3 The profit function for grain yield

The main objective for maize and wheat breeding programs
is to increase grain yield (Y1) and to decrease traits such as
plant height, days to maturity, and plant diseases, and oth-
ers. In these programs, only Y1 has a market price, so we will
define the profit function as follows: let π be the price of Y1 in
tons per hectare, and let NH be the number of hectares culti-
vated by the breeder; then, the profit function associated with
Y1 is:

𝑃 = 𝑁𝐻

(
π𝑌1 − C

)
, (2)

where NHπY1 is the net economic return and NHC is the selec-
tion cycle cost of the breeding program. Equation 2 only
includes Y1.

2.1.4 The profit function for all traits under
selection

Suppose each random vector of t traits y’ = [Y1. . .Yt] (which
include the grain yield, Y1, and all traits associated with Y1)
is independent and identically distributed as a multivariate
normal distribution with vector of means μ’ = [μ1. . .μt] and
covariance matrix P, where matrix P indicates that the ele-
ments of y may be correlated and have different variance. We
will include vector y’−1 = [Y2. . .Yt] (which does not include
Y1) in Equation 2 through the conditional expectation of Y1
given y−1. Thus, let:

𝑌1 = 𝑏0 + 𝐛′𝐲−1 + 𝑒 (3)

be the multiple linear regression model where e has a nor-
mal distribution, null expectation and variance σ2𝑒 = σ21 −
co𝑣′(𝑌1, 𝐲−1)𝐒−1cov(𝑌1, 𝐲−1), where σ21 is the variance of Y1,
cov(Y1, y−1) is the covariance between Y1 and y−1, and S−1

is the inverse of the covariance matrix of y−1 (S) (Rencher &
Schaalje, 2008). In addition, we assumed that the covariance
between any pairs of e is 0. Therefore, with Equation 3, the
conditional expectation of Y1 given y−1 is:

𝐸
(
𝑌1|𝐲−1) = μ1 + 𝐛′

(
𝐲−1 −𝐦

)
, (4)

where μ1 is the mean of Y1, m’ = [μ2. . .μ t] is the vector of
means of y−1, and b’ = cov’(Y1, y–1)S–1 = [b2. . .bt] is the
vector of regression coefficients. In Equations 3 and 4, the
values of y−1 are not under the control of the experimenter
and occur randomly along with Y1 (Rencher, 2002). Thus, on
each plant, we observe Y1 and y−1 jointly.

2.1.5 The maximum likelihood estimator
(MLE) of Equations 3 and 4 is

𝑌1 = 𝐸̂
(
𝑌1|𝐲−1) = μ̂1 + 𝐛̂′

(
𝐲−1 − 𝐦̂

)
, (5)

where Ŷ1 is the estimated BLP of Y1, whereas μ̂1, 𝐛′ =
ĉo𝑣′(𝑌1, 𝐲−1)𝐒−1 = [𝑏̂2 … 𝑏̂𝑡] and 𝐦̂ are MLE of μ1, 𝐛′ =
co𝑣′(𝑌1, 𝐲−1)𝐒−1 = [𝑏2 … 𝑏𝑡], and m, respectively (Rencher
& Schaalje, 2008). Equation 5 is a function of y−1 alone and
not a function of Y1 (Christensen, 2011), allowing us to write
an approximated profit function for t traits as:
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4 CERÓN-ROJAS ET AL.Crop Science

𝑃𝑡 ≈ 𝑁𝐻

[
0.5π𝑌1 + 0.5π𝑌1 − 𝐶

]
= 𝑁𝐻

{
0.5π𝑌1 + 0.5π

[
μ̂1 + 𝐛̂′

(
𝑦−1 − 𝐦̂

)]
− 𝐶

} (6)

In Equation 6, the symbol “≈” indicates an approximation.

2.1.6 Deriving and estimating the economic
weights

Suppose C is fixed (Equation 1), the partial derivatives of
Equation 6 with respect to Y1 and each trait associated with
Ŷ1 (Equation 5) are, respectively, ∂

∂𝑌1
𝑃𝑡 =

π𝑁𝐻

2 and ∂
∂𝑌𝑗

𝑃𝑡 =
π𝑁𝐻

2 𝑏̂𝑗 , j = 2,3,. . . ,t,
from where the estimated economic weights for Y1 and Yj

are:

𝑤̂1 =
π𝑁𝐻

2
and 𝑤̂𝑗 =

π𝑁𝐻

2
𝑏̂𝑗 , 𝑗 = 2, 3,… , 𝑡, (7)

respectively (Goddard, 1983; Moav & Hill, 1966; Moav &
Moav, 1966). Therefore, according to Equation 7, an MLE of
the vector of economic weights𝐰′ = [𝑤1 …𝑤𝑡] (Equation A1
and A2) is:

𝐰̂ =
π𝑁𝐻

2

[
1
𝐛̂

]
, (8)

where all the components of Equation 8 were defined earlier.

2.1.7 Estimation of the LPSI and its
parameters

According to Pawitan (2013, p. 45), the invariance property
of the MLE says: “If 𝐰̂ is the MLE of w and g(w) is a function
of w, then g(𝐰̂) is the MLE of g(w).” Thus, by this property
and by Equation 8, we can assume that an MLE estimator of
the LPSI vector of coefficients (Equation A3) is:

𝛃̂ = 𝐏̂−1 𝐆̂ 𝐰̂ =
π𝑁𝐻

2
𝐏̂−1𝐆̂

[
1
𝐛̂

]
(9)

where 𝐆̂ and Pˆ−1 are restricted MLE (Cerón-Rojas & Crossa,
2018) of the genotypic covariance matrix G (Equation A1)
and the inverse phenotypic covariance matrix of P (Equa-
tion A3), respectively. Equation 9 implies the estimated LPSI
(Equation A3) is:

𝐼 = 𝛃̂′𝐲 (10)

which should be interpreted in terms of monetary units when
breeders predict H (Equations A1 and A2). The estimated
LPSI selection response (Equation A4) is:

𝑅̂ = 𝑘

√
𝛃̂′𝐏̂𝛃̂, (11)

where k denotes the selection intensity. Furthermore, because
π𝑁𝐻

2 appears on the numerator and denominator of the corre-
lation (Equation A5) between LPSI and H, this last parameter
is not affected by π𝑁𝐻

2 and can be estimated as:

ρ̂𝐻𝐼 =

√
𝛃̂′𝐏̂𝛃̂√
𝐰̂′𝐆̂𝐰̂

. (12)

All the terms of Equation 12 were defined earlier.

2.1.8 Estimating the LPSI parameters

For the set of economic weights taken from published lit-
erature (Cerón-Rojas et al., 2015) we estimated the LPSI
parameter and we made selection with the simulated and real
datasets using “RIndSel,” an R software for Index Selection
(Alvarado et al., 2018; Pacheco et al., 2017; Perez-Elizalde
et al., 2014). In addition, to apply the profit function described
in this work, we made an R-code to estimate the economic
weights and to make LPSI selection. RIndSel is an R soft-
ware completely automated, thus, users only need to learn how
to introduce their data into the program and how to interpret
the results. This software, and a complete user manual, can
be downloaded from https://data.cimmyt.org/dataset.xhtml?
persistentId=hdl:11529/10854

2.2 Materials

2.2.1 Simulated datasets

These datasets were simulated by Cerón-Rojas et al. (2015)
with QU-GENE software using 2,500 molecular markers and
315 quantitative trait loci (QTLs) for eight phenotypic selec-
tion cycles (C0 to C7), each with four traits (Y1, Y2, Y3, and
Y4), 500 genotypes, and four replicates for each genotype. The
authors distributed the markers uniformly across 10 chromo-
somes and the QTLs randomly across the 10 chromosomes to
simulate maize (Zea mays L.) populations. A different num-
ber of QTLs affected each of the four traits: 300, 100, 60, and
40, respectively. The common QTLs affecting the traits gener-
ated genotypic correlations of −0.5, 0.4, 0.3, −0.3, −0.2, and
0.1 between Y1 and Y2, Y1 and Y3, Y1 and Y4, Y2 and Y3, Y2
and Y4, and Y3 and Y4, respectively. The economic weights
assigned by Cerón-Rojas et al. (2015) to Y1, Y2, Y3, and Y4,
were 1, −1, 1, and 1, respectively. Using these economic
weights and those obtained with the proposed profit function,
we compared the results using seven phenotypic selection
cycles (C1 to C7) for the selected top 10% (k = 1.755) of the
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CERÓN-ROJAS ET AL. 5Crop Science

estimated LPSI values in each cycle. In the selection process,
we assumed that Y1 denotes grain yield in kilograms, whereas
Y2, Y3, and Y4 may denote plant height, ear height, etc.

2.2.2 Real datasets

We used one maize and one wheat dataset from CIMMYT
breeders’ experimental research. The maize traits (grain yield,
GY in t ha−1; anthesis day, AD, in days; moisture content,
MOI, %; plant height, PH, in cm; and ear height, EH, in cm)
were evaluated in five sites. The number of maize genotypes
was 68, each with two repetitions, whereas the environment
was optimal. The economic weight for each trait was 5, −0.3,
−0.3, −0.3 and −0.3, respectively. Likewise, the wheat traits
(GY; heading, HD, days; and PH) were evaluated in one envi-
ronment. The number of wheat genotypes was 100, each with
two repetitions, whereas the economic weight for each trait
was 5, −0.3, and −0.3, respectively. We compared the maize
and wheat results using the selected top 10% (k = 1.755) of
the estimated LPSI values.

3 DATA AVAIL ABILITY

3.1 Simulated and real data

3.1.1 Simulated data

Simulated population datasets are available in the Applica-
tion of a Genomics Selection Index to Real and Simulated
Data repository at http://hdl.handle.net/11529/10199.
The simulated phenotypic datasets are in a folder named
Simulated_Data_GSI, which contains two subfolders:
Data_Phenotypes_April-26-15 and Haplotypes_GSI_April-
26-15. In turn, folder Data_Phenotypes_April-26-15 contains
two subfolders: GSI_Phenotypes-05 and PSI_Phenotypes-05.
This last folder contains eight Excel datasets, from which
we used the following Excel files for the LPSI selection:
C1_PSI_05_Pheno, C2_PSI_05_Pheno, C3_PSI_05_Pheno,
C4_PSI_05_Pheno, C5_PSI_05_Pheno, C6_PSI_05_Pheno,
and C7_PSI_05_Pheno.

3.1.2 Real data

The real datasets are available by request at j.crossa@cgiar
.org.

3.2 Estimated costs and prices

3.2.1 Simulated data

Fideicomiso Instituido en Relación con la Agricultura
(FIRA), or Trust Established in Relation to Agriculture, is a

Mexican government institution that predicts prices and costs
associated with agriculture each year. According to FIRA, for
all Mexican states in 2022, the average cost per hectare of
cultivated maize grain was MX$38,392.75 (Mexican pesos),
whereas the average estimated price for each ton of maize
grain yield was MX$3,182.00. For all Mexican states, FIRA
estimated a maize grain yield of 12 tons per hectare for 2022.
Complete FIRA information is available at the link: https://
www.fira.gob.mx/Nd/Agrocostos.jsp

Based on FIRA information, we adapted the Cerón-Rojas
et al. (2015) simulated maize datasets described earlier, if
the harvest corresponded to 1% of a hectare, that is, a plot
or cultivated area of 10 by 10 = 100 m2. Note that 1 ha is
equal to 100 by 100 = 10,000 m2; therefore, to obtain the
cost for the simulated datasets, we divided MX$38,392.75 by
100, where the cost for each simulated selection cycle was
MX$383.93. In addition, the average of simulated grain yield
for Cycle 1 was 161.88 kg; thus, because for 1,000 kg the
price is MX$3,182.00, by using the rule of three, we found
that for 161.88 kg the grain yield price is MX$515.101. We
used a similar approach to obtain prices and costs for the other
selection cycles.

3.2.2 Real data

According to FIRA data, we used MX$3,182.00 for each
ton of maize. Nevertheless, for each ton of wheat, the aver-
age price estimated by FIRA was MX$5,265.00. To estimate
the vector of economic weights (Equation 9) for both real
datasets, NH = 1.0 (1 ha).

4 RESULTS

4.1 Theoretical results

4.1.1 Generalized profit function

Note that Equation 6 can be written as

𝑃𝑡 ≈ 𝑁𝐻

[
π
𝑛
𝑌1 +

(𝑛 − 1) π
𝑛

𝑌1 − 𝐶

]
.

This means that when n = 1 we shall have Equation 2, and
for n = 2 we shall have Equation 6. However, when n = 3 or n
= 4, we shall have a profit function that assigns more weight
to Ŷ1 than to Y1. Thus, by the above equation, breeders are
free to assign weights to Ŷ1 and Y1 according to their interest.

4.1.2 Some statistical properties of the
estimated LPSI parameters

Matrices 𝐆̂ and Pˆ−1 are MLE, and because 𝐰̂ is also an
MLE, by the MLE invariance property earlier indicated, we
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6 CERÓN-ROJAS ET AL.Crop Science

T A B L E 1 Cost and price (π, in Mexican pesos), and π time
percent of cultivated hectares (1% of NH) divided by 2 ( π𝑁𝐻

2
), for seven

simulated selection cycles

Cycle Cost Price 𝛑𝑵𝑯

𝟐
1 383.93 515.101 2.576

2 383.93 542.415 2.712

3 383.93 564.924 2.825

4 383.93 587.793 2.939

5 383.93 611.757 3.059

6 383.93 634.598 3.173

7 383.93 656.082 3.280

Average 383.93 587.524 2.938

can assume that the estimated LPSI vector of coefficients
(𝛃̂ = 𝐏̂−1 𝐆̂𝐰̂, Equation 9) is MLE. The same is true for the
estimated correlation between the estimated LPSI (ρ̂𝐻𝐼 ) and
the net genetic merit (Equation 12; Table 1), as well as the
estimated LPSI selection response (𝑅̂, Equation 11; Table 3).
Cerón-Rojas and Crossa (2020b) have shown ρ̂𝐻𝐼and 𝑅̂ are
asymptotically unbiased estimators with minimum variance,
and they gave methods to obtain confidence intervals for the
expectations of 𝑅̂ and ρ̂𝐻𝐼 ; however, until now, the statistical
properties of 𝛃̂ = 𝐏̂−1 𝐆̂𝐰̂ have not been shown completely.
By the above results, all the estimated parameters associated
with the LPSI are maximum likelihood estimators with min-
imum variance, and they are asymptotic unbiased estimators
for R and ρ𝐻𝐼 .

4.1.3 Three asymptotic statistical
properties of the estimator of LPSI

In the Introduction, we indicated some statistical proper-
ties of the LPSI when the phenotypic (P) and genotypic
(G) covariance matrices are known. Let ϵ = 𝐻 − 𝐼 be
the error of prediction of 𝐼 (Equation 10); then: (a) ϵ and
𝐼 are independent; (b) by the central limit theorem (Kollo,
2005), 𝐼 converges in distribution with the normal distribution

𝑁[0, 2(σ2
𝐼
)2∕(𝑛 − 1)] (Cerón-Rojas & Crossa, 2020b); and

(c) 𝐼 is an asymptotically efficient predictor. This last result
allows us to construct a confidence interval for the conditional
expectation of H [E(H|I)] as:

𝐼 ±𝑍 α
2

√
2√

𝑛 − 1
σ̂2
𝐼

where 𝐼 denotes the estimated LPSI values, Zα/2 is the upper
100α

2 percentage point of the standard normal distribution,
and 0 ≤ α ≤ 1 is the level of confidence. Thus, to establish

a 100(1 − α) = 95% confidence interval for E(H/I), the value
of 𝑍α∕2 is equal to 1.96. To construct the above confidence

interval, it should be convenient to omit the π𝑁𝐻

2 from the

estimated LPSI parameters because π𝑁𝐻

2 increases the length
of the interval. The same is true for the variance of the error
of prediction. That is, the π𝑁𝐻

2 values increase the estimate of
the prediction error variance. According to these results, the
LPSI theory gives breeders a viable statistical method to make
multi-trait selection.

4.2 Numerical results

4.2.1 Cost, prices, and economic weights for
simulated datasets

Table 1 presents cost (Equation 1), grain yield price (π),
and π times the number of hectares cultivated (NH = 0.01
or 1% of a cultivated hectare) and divided by 2 ( π𝑁𝐻

2 ; e.g.,
[(515.101)(0.01)]/2 = 2.576). Although the cost for each
selection cycle was the same, the price changed, as this
depends on the harvested grain yield in each selection cycle.
Similar results were obtained for the π𝑁𝐻

2 values because this
depends on π.

According to Equations 7–9, the estimated economic
weights presented in Table 2 (𝑤̂1 to 𝑤̂4) were the product of
π𝑁𝐻

2 times the coefficient of grain yield Y1 (1.0 or 𝑏̂1) and
the estimated coefficients of regression of Y1 on Y2, Y3, and
Y4 (𝑏̂2 to 𝑏̂4). For this reason, whereas the economic weight of
Y1was equal to π𝑁𝐻

2 (Table 2), the economic weights for traits

Y2 to Y4 were 𝑤̂2 =
π𝑁𝐻

2 𝑏̂2, 𝑤̂3 =
π𝑁𝐻

2 𝑏̂3, and 𝑤̂4 =
π𝑁𝐻

2 𝑏̂4,
respectively. In addition, because the estimated regression
coefficients 𝑏̂2 to 𝑏̂4 are MLE, by the MLE invariance prop-
erty (Pawitan, 2013), the estimators 𝑤̂2, 𝑤̂2, and 𝑤̂4 were
MLE. This means we can assume the estimator of the vector
of economic weights (Equation 8) was a minimum variance
and asymptotic unbiased estimator.

4.2.2 Estimated LPSI selection response for
simulated datasets

For k = 1.755 (top 10% of the estimated LPSI values), Table 3
presets the estimated selection response obtained when using
the profit function (𝑅̂) and the estimated selection response
(𝑅̂∗) when the economic weight were obtained from the pub-
lished literature. In a similar manner, Table 3 presents the
estimated correlation coefficient (ρ̂HI, ρ̂∗HI) between the LPSI
and H for seven simulated selection cycles. Although the aver-
age of the 𝑅̂ values was 29.382, the average of the 𝑅̂∗ values
was 14.175 for the seven simulated selection cycles. This
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T A B L E 3 Estimated selection index response (𝑅̂, 𝑅̂∗), for k =
1.755, and estimated correlation coefficient (ρ̂𝐻𝐼 ,ρ̂∗

𝐻𝐼
) between the

index and the net genetic merit for seven simulated selection cycles

Cycle 𝑹̂ 𝑹̂∗ 𝛒̂𝑯𝑰 𝛒̂∗
𝑯𝑰

1 33.617 17.808 0.880 0.906

2 28.847 15.690 0.830 0.883

3 27.309 14.219 0.810 0.866

4 31.731 14.219 0.830 0.866

5 30.761 13.638 0.820 0.855

6 26.588 12.038 0.780 0.830

7 26.821 11.612 0.780 0.832

Average 29.382 14.175 0.820 0.863

*This parameter was estimated using the vector of economic weights 𝐰′ = [1 −1
1 1].

means that the estimated vector of economic weights (Equa-
tion 8) affected mainly the estimated LPSI selection (𝑅̂), as
we would expect.

By Equations 8 and 9, the estimated selec-
tion response (Equation 11) can be written as

𝑅̂ = π𝑁𝐻

2 𝑘

√[
1 𝐛̂′

]′ 𝐆̂𝐏̂−1𝐆̂
[
1
𝐛̂

]
. This means that 𝑅̂

is proportional to π𝑁𝐻

2 , k, and to

√[
1 𝐛̂′

]′ 𝐆̂𝐏̂−1𝐆̂
[
1
𝐛̂

]
.

Note that when π𝑁𝐻

2 and

√[
1 𝐛̂′

]′ 𝐆̂𝐏̂−1𝐆̂
[
1
𝐛̂

]
tend to zero,

𝑅̂ tends to zero. Therefore, the higher value of 𝑅̂ will be when
π𝑁𝐻

2 and
[
1 𝐛̂′

]′ 𝐆̂𝐏̂−1𝐆̂
[
1
𝐛̂

]
will be high. Thus, 𝑅̂ has one

economic part ( π𝑁𝐻

2 ) and one genetic part. For the breeding

objective,
[
1 𝐛̂′

]′ 𝐆̂𝐏̂−1𝐆̂
[
1
𝐛̂

]
should be high, whereas for

the economic objective, π𝑁𝐻

2 should be high. For breeding
and economic objectives jointly, both parts should be high.

4.2.3 Estimated LPSI correlation for
simulated datasets

The total average of the ρ̂HI values was 0.820 (Table 3), mean-
ing that the estimated LPSI values predict the H values with
high accuracy. However, the total average of the ρ̂∗HI values
was 0.863 (Table 3), that is, the values of ρ̂∗HI were higher than

the ρ̂HI values. In addition, because π𝑁𝐻

2 appears in the numer-
ator and denominator of the correlation between the estimated
LPSI and H values (Equation 12), the values of ρ̂HIand ρ̂∗HI
were not affected by the π𝑁𝐻

2 values. That is, because ρ̂HIand
ρ̂∗HI are invariant to scale change, they are not affected by
changes in economic weights.
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8 CERÓN-ROJAS ET AL.Crop Science

4.2.4 Maize real data results

For this dataset, the ton grain yield price was
MX$3182.00, thus, for 𝑁𝐻 = 1.0, π𝑁𝐻

2 = (3182)(1)
2 =

1, 591.0, 𝐛̂′ = [ 1 0.174 −0.030 0.030 0.013 ], 𝐰̂′ =
[ 1, 591 276.23 −46.65 43.76 20.30 ], and 𝛃̂′ =
[ 276.80 512.60 55.18 2.72 52.94 ]. In addition, for k
= 1.755, the estimated LPSI selection response was
𝑅̂ = 1, 567.13, whereas the estimated correlation between
H and the LPSI was ρ̂HI = 0.870, and the estimated
LPSI was 𝐼 = 276.8GY + 512.6AD + 55.18MOI +
2.72PH + 52.94EH. When the economic weights for
each trait were 5, −0.3, −0.3, −0.3, and −0.3, respectively,
𝛃̂′ = [ 0.11 −0.22 0.13 0.05 −0.09 ], 𝑅̂∗ = 0.79, and

ρ̂∗HI = 0.58. Thus, because π𝑁𝐻

2 only affected 𝑅̂, this was

higher than 𝑅̂∗. Nevertheless, in this case ρ̂HI was higher
than ρ̂∗HI.

4.2.5 Wheat real data results

For this dataset, the ton grain yield price was MX$5265.00,
then, for 𝑁𝐻 = 1.0, π𝑁𝐻

2 = (5,265)(1)
2 = 2, 632.50,

𝐛̂′ = [ 1 −0.002 0.012 ], 𝐰̂′ = [ 2, 632.5 −5.30 31.60 ], 𝛃̂′ =
[ 1, 849.30 −2.30 35.12 ]. In addition, for k = 1.755,
𝑅̂ = 1291.5 and ρ̂𝐻𝐼 = 0.85. When the economic
weight for each trait were 5, −0.3, and −0.3, respectively,
𝛃̂′ = [ 3.30 −0.25 0.18 ], 𝑅̂∗ = 2.67, and ρ̂∗HI = 0.82. Once

again, because π𝑁𝐻

2 affected only 𝑅̂, this was higher than 𝑅̂∗,
whereas the correlation coefficients were similar.

4.2.6 The real maize and wheat genotypes
selected with LPSI

Table 4 presents the selected maize genotype (with k= 1.755),
and the means of five selected traits (GY, AD, MOI, PH, and
EH) using the economic weights obtained with the profit func-
tion and the economic weights 5, −0.3, −0.3, −0.3, and −0.3,
respectively. In addition, Table 4 presents the total means of
the selected traits, the population mean of the traits, and the
selection differential (mean of the selected traits minus the
population mean of the traits) for each trait. Table 5 presents
the selected wheat genotype (with k = 1.755), the means of
three selected traits (GY, HD, and PH) using the economic
weights obtained with the profit function and the economic
weights 5, −0.3 and −0.3, respectively, the total mean of
the selected traits, the population mean of the traits, and the
selection differential for each trait.

The maize genotypes selected by our approach are differ-
ent to the maize genotypes selected by the other approach
(Table 4). However, six wheat genotypes (6, 10, 12, 39, 45, 71)

selected with our approach were the same as those selected
by the other approach (Table 5). This means that when the
number of traits increases in the LPSI, both approaches tend
to select different genotypes, which does not occur when the
number of LPSI traits is low, as in the wheat dataset. Likewise,
although the maize and wheat estimated LPSI values obtained
using the profit function economic weights were all positive
(Tables 4 and 5), the estimated maize and wheat LPSI values
obtained using the other economic weights described above
were all negative. Thus, both sets of economic weights affect
the estimated LPSI values in a different way, as we would
expect. In addition, note that the traits mean selected with the
LPSI using our approach were all higher than the traits mean
selected by the LPSI using the other approach. This explains
why, in general, the selection differential values for each trait
obtained with our approach were mainly positive, whereas for
the other approach they were mostly negative.

5 DISCUSSION

Using a stochastics linear regression model and a profit
function, we developed a methodology to enable plant breed-
ers define economic weights for selection indices. Our aim
was to obtain economic weights for selection indices that
can improve selection decisions in plant breeding when sev-
eral traits (GY, maturity, HD, PH, etc.) are simultaneously
selected. The problem to construct a profit function in maize
and wheat breeding is evident: only GY has a market price,
as we have indicated in the Introduction of this study. There-
fore, our approach is based on GY market price and on the
regression coefficients of GY on all the other associated traits.

Our results show that the profit function and the regression
theory allow us to estimate the trait economic weights in the
maize and wheat breeding context and select genotypes using
the LPSI theory. For seven simulated datasets and two real
datasets, the estimated LPSI selection responses were higher
in all cases when we used the method described in this study
to obtain the economic weights. This was not generally true
for the estimated correlation between the LPSI and H, thus
further research is necessary on this topic.

When we compared the 𝑅̂ values obtained in this study with
the 𝑅̂∗ values (Table 3) obtained by Cerón-Rojas et al. (2015)
and Cerón-Rojas and Crossa (2020b), who used the simulated
datasets described in this paper and the LPSI to make selec-
tions, we found that in all cases the 𝑅̂ values were higher than
the 𝑅̂∗ values. The same was true for the maize and wheat
real datasets. In addition, the estimated selection responses of
this research have an economic interpretation, but this type
of interpretation it is not possible for the 𝑅̂∗ values of the
above authors. Thus, the profit function described in this study
to obtain economic weights is effective for evaluating the
profitability of plant breeding programs.

 14350653, 0, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/csc2.20882 by C

ochrane M
exico, W

iley O
nline L

ibrary on [13/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CERÓN-ROJAS ET AL. 9Crop Science

T A B L E 4 Selected maize genotype and selected traits (grain yield, GY; anthesis day, AD; moisture content, MOI; plant height, PH; and ear
height, EH) for k = 1.755 using the economic weights obtained with the profit function and the economic weights 5, −0.3, −0.3, −0.3 and −0.3,
respectively, and estimated linear phenotypic selection index (LPSI) values

Results using profit function Results NOT using profit function
Genotype GY AD MOI PH EH LPSI Genotype GY AD MOI PH EH LPSI

t ha−1 d % cm t ha−1 d % cm

59 8.7 72.1 16.3 225.3 118.7 17,188.9 67 4.3 64.3 14.6 205.6 91.6 −9.4

62 8.3 72.0 15.5 230.4 114.5 17,052.6 68 5.5 67.0 15.4 210.9 98.7 −10.2

64 8.1 71.3 15.3 239.1 118.5 16,913.1 56 5.2 65.6 15.7 208.0 100.9 −10.2

61 8.5 70.5 14.7 226.2 121.3 16,883.6 55 5.9 66.7 16.1 217.3 104.9 −10.2

63 6.4 72.4 14.0 214.7 104.1 16,859.1 66 7.7 71.3 16.0 212.0 95.4 −10.4

52 7.8 71.3 17.2 231.5 117.4 16,843.9 65 7.2 70.0 14.2 215.4 99.0 −10.5

9 7.4 71.1 16.8 229.4 121.9 16,813.3 53 7.5 70.8 17.7 232.8 113.2 −10.7

SIMa 7.9 71.5 15.7 228.1 116.6 6.3 67.4 14.8 210.6 99.0

PM 7.4 70.2 16.4 226.0 115.8 7.4 70.2 16.4 226.0 115.8

SD 0.47 1.3 −0.74 2.1 0.81 −1.1 −2.8 −1.6 −15.4 −16.8

aSIM, selected individual mean; PM, population mean; SD, selection differential.

T A B L E 5 Selected wheat genotypes and selected traits (grain yield, GY; heading, HD; and plant height, PH) for k = 1.755 using the economic
weights obtained with the profit function and the economic weights 5, −0.3, and −0.3, respectively, and estimated linear phenotypic selection index
(LPSI) values

Results using profit function Results NOT using profit function
Genotype GY HD PH LPSI Genotype GY HD PH LPSI

t ha−1 d cm t ha−1 d cm

45 9.1 74.9 76.7 15,713.6 45 9.1 74.9 76.8 −2.0

6 8.9 77.5 79.7 15,344.9 71 8.8 74.2 75.4 −2.7

31 8.8 75.9 82.2 15,140.5 39 8.7 70.1 80.3 −2.8

71 8.7 74.1 75.3 15,091.0 11 8.4 70.2 76.4 −3.0

9 8.7 77.3 81.8 15,024.3 10 8.7 76.5 75.4 −3.5

10 8.7 76.4 75.3 14,976.4 26 8.6 75.6 74.1 −3.5

39 8.7 70.1 80.2 14,926.8 12 8.6 73.8 78.7 −3.5

83 8.7 79.4 80.1 14,903.4 6 8.9 77.6 79.7 −3.8

12 8.6 73.7 78.6 14,880.8 37 8.2 70.7 75.8 −3.9

14 8.7 75.7 85.8 14,871.3 100 8.2 71.7 74.5 −3.9

Selected
individual
mean

8.7 75.5 79.6 8.6 73.5 76.7

Population mean 8.1 75.8 79.3 8.1 75.8 79.3

Selection
differential

0.63 −0.28 0.29 0.50 −2.32 −2.63

As we would expect, the profit function (Equations 7 and 8)
assigned more weight to Y1 than to the other traits. In addi-
tion, because the economic weight of Y1 is equal to π𝑁𝐻

2 , all

the seven selection cycles coefficients of Y1 (𝑏̂1) in Table 2
are equal to 1.0, whereas the values of the other traits’ regres-
sion coefficients (𝑏̂2 to 𝑏̂4) differ from 1.0. This shows the

method described in this study is an adaptation of the Smith
(1936) idea to the multiple regression context using the profit
function and regression theory.

Note that Equations 7 and 8 are linked to the market situa-
tion and therefore the trait economic values are neither simply
arbitrarily fixed values nor preference values. In addition,
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10 CERÓN-ROJAS ET AL.Crop Science

the regression coefficients, which are multiplied by π𝑁𝐻

2 to
obtain the economic weights, are associated with grain yield
effects. Thus, the proposed profit function is a good option for
obtaining economic weights to make LPSI selection in plant
breeding.

5.1 Why use a linear approach to derive the
economic weights?

In the study of maize and wheat quantitative trait (QTs), it
is assumed traits such as GY, PH, EH, etc., are the result
of an undetermined number of unobservable gene effects
distributed across the plant genome that interact among
themselves and with the environment to produce the observ-
able characteristic plant phenotypes (Cerón-Rojas & Crossa,
2018). This implies the QTs have continuously distributed
phenotypes that do show a complex Mendelian inheritance
(Hill, 2010). The QTs are difficult to analyze because
heritable variations of these traits are masked by larger non-
heritable variations that make it difficult to determine the
genotypic values of individual plants (Smith, 1936).

To analyze QTs, we assumed the traits of interest and the
net genetic merit have joint multivariate normal distribution.
Under this distribution, the means, variances, and covariances
completely describe the index and trait values. Moreover, if
the trait values are not correlated, they are independent; lin-
ear combinations of traits are normal; and even when the
trait phenotypic values do not have normal distribution, by
the central limit this distribution serves as a useful approx-
imation (Cerón-Rojas & Crossa, 2020b; Rencher, 2002). In
addition, under the multivariate normality assumption, the
regression of the net genetic merit on any linear function of
the phenotypic values is linear (Cerón-Rojas & Crossa, 2022;
Kempthorne & Nordskog, 1959).

Using histograms, quantile–quantile plots, and the
Shapiro–Wilk and Kolmogorov–Smirnov normality tests,
Cerón-Rojas and Crossa (2018, 2020b) showed that the esti-
mated LPSI values, and the average values of traits such as
GY, PH, EH, etc., in maize and wheat breeding, approached
the normal distribution. One additional criterion to assume
the QTs have multivariate normal distribution is based on the
infinitesimal model theory (Barton et al., 2017; Fisher, 1918;
Turelli, 2017; Walsh & Lynch, 2018). Under this model, (a)
in the plant genome there is a very large number of loci, each
with very small effects; (b) in a randomly mating population,
under no selection, the genotypic distribution is normal, and
(c) the genotypic distributions stay at least close to normal
after selection (Walsh & Lynch, 2018).

Under the foregoing assumptions, Equations 3–5 are lin-
ear. Moreover, any function that is expressible as Equation 4
is linear even if the vector b depends on the joint distribution

of H and the traits phenotypes (Cerón-Rojas & Crossa, 2022).
Based on these reasons, using a linear approach to obtain
economic weights in the maize and wheat breeding context
seems correct. Finally, note in Equation 3, the independent
and dependent variables are random variables, and the same
is true for the residuals; then Equation 3 and 4 are stochastics
linear model, no determinist model.

Alternatively, Goddard (1983) has analyzed the profit func-
tion in the linear and nonlinear context and concluded the
better approach to maximize the LPSI selection response is to
use a linear profit function. In his research, Goddard (1983)
presents examples of why breeders should use a linear profit
function in the LPSI context to derive economic weights.
Based on that, we believe our approach to obtain economic
weights is optimal in the context of maize and wheat.

5.2 The invariance property of the MLE

The invariance property of the MLE is associated with the
invariance principle of the likelihood ratio, which indicates
“in the likelihood function the information should be invariant
to the choice of parameterization” (Pawitan, 2013, p. 45). This
means if we do not know where the parameter of interest is,
then we should not know where its log is, or where its squared
is, or its inverse value. That is, we should be equally igno-
rant regardless of how we model our problem. Pawitan (2013,
p. 44) indicates “the invariant property of the likelihood ratio
should be seen only as a convenient axiom, rather than a
self-evident truth.”

5.3 Other approximations to the economic
weights problem

Economic weights are difficult to assign in plant and animal
breeding programs, and some authors have described alter-
natives to the LPSI. For example, Elston (1963) described
a free-economic weights selection index that does not
require estimates of the phenotypic and genotypic covariance
matrices. Likewise, other authors (Brascamp, 1984; Itoh &
Yamada, 1986, 1987; Pesek & Baker, 1969; Yamada et al.,
1975) described the desired gains index, which does not use
economic weights because it does not predict H, rather it only
estimates the expectation of g. In turn, Cerón-Rojas et al.
(2008b, 2016) described the eigen selection index method,
where w (the vector of “economic weights”) is a linear com-
bination of the first eigen-vector of the matrix of multi-trait
heritability. Thus, these last three indices do not use a profit
function (net returns minus costs) to obtain economic weights
to evaluate breeding programs. However, in this study, we
have showed it is possible to assign economic weights to
maize and wheat breeding traits using a profit function.
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Finally, it is evident that there is the possibility to develop-
ment non-linear profit functions to obtain economic weights,
however, Goddard (1983) have showed that a LPSI will
always give the highest selection response including when
breeder uses non-linear profit function. Our research repre-
sents the first formal attempt to incorporate economic weights
for selection indices that can improve selection decisions.

5.4 Socio economic limitations to selection
indices based only on profitability

Farmers and consumers are now placing strong emphasis on
sourcing and sustainability, thus other criteria such as car-
bon footprints, water use, nitrogen emissions, and ecosystem
services should be considered in addition to profitability.
However, these issues are hard to capture in a simple selec-
tion index that attempts to improve few traits. Farms are more
complex than simple profit and the need for cultivars that do
not maximize profitability of the crop but of the system is an
important factor that is not easily incorporated in a selection
index.

In addition, not all farmers are risk takers, and often plant
high yielding hybrids at low density to avoid failure risks.
This gradient in plant population densities used by farmers
indicates there is a gradient in risk attitudes. The question
is: what is the target group to make selections for? Simple
models to account for risk attitude suggest the selection of
different crops and cultivars within crops account for the risk
aversion differences. The method proposed here for estimat-
ing economic weights to be used in a selection index to bring
an economic dimension to selection indices is a step towards
allowing the breeder to use economic information correctly.
Further studies are needed to formalize and bring socioeco-
nomic dimensions to selection decisions by using a framework
that considers the many uncertainties and sources of vari-
ability among farms and the mixture of farms in the target
population of farms.

6 CONCLUSIONS

Assuming the traits and the net genetic merit have joint
multivariate normal distribution, we have described a profit
function for obtaining economic weights in maize and wheat
breeding programs. Using the profit function and the linear
regression theory, we obtained a profit function that extends
the Smith’s idea to assign economic weights in wheat breed-
ing. In animal breeding programs, all economic traits of
interest have specific market prices; however, in the maize and
wheat breeding context, only GY has a specific price on the
market. For this reason, the proposed profit function is com-

posed of two parts: one associated with the GY and the other
linked to the expectation of GY given the values of the other
traits. Using the proposed approach, the average of the esti-
mated correlation between the LPSI and the net genetic merit
for the seven simulated selection cycles was 0.820, and for
the maize and wheat real datasets were 0.87 and 0.85, respec-
tively. Therefore, we concluded the profit function proposed
in this study is a strong option for obtaining economic weights
in plant breeding.
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APPENDIX
Linear Phenotypic Selection Index Theory
The net genetic merit
Let 𝐠′ = [𝐺1 𝐺2 … 𝐺𝑡 ] be a vector of true unobservable
genotypic random variables for t traits with multivariate nor-
mal distribution and null expectation; then the individual net
genetic merit is:

𝐻 = 𝒘′𝒈 (A1)

where 𝐰′ = [𝑤1 𝑤2 … 𝑤𝑡 ] is a vector of economic weights.
The variance of H is denoted as:
σ2
𝐻

= 𝐰′𝐆𝐰,
where G is the genotypic covariance matrix.
It is possible to write Equation A1 as:

𝐻 = 𝑚𝐻 + 𝛃′ (𝐲 − 𝛍) + ϵ (A2)

where mH is the mean of H, 𝐲′ = [𝑌1 𝑌2 … 𝑌𝑡 ] is a random
vector of t traits, 𝛍′ = [ μ1 μ2 … μ𝑡 ] is a vector of t phe-
notypic means of y, and ϵ is the deviation of 𝑚𝐻 + 𝛃′(𝐲 − 𝛍)

from H. We have assumed that ϵ has a normal distribution, null
expectation, and variance σ2ϵ , and that the covariance between
any pairs of ϵ is 0. Equation A2 is a multiple linear regression
model where the independent (y) and dependent (H) variables
are random and have a joint multivariable normal distribution.

In the profit function context, Equations A1 and A2 denote
the total individual genotypic economic value (Kempthorne
& Nordskog, 1959) and are expressed in monetary units. For
example, if we select for grain yield and grain protein in each
selection cycle, H should be written as:

𝐻 = $
grain
ha

grain∕ha + $
protein
ha

protein∕ha = $

where “$” denotes the costs of grain yield and grain protein
(Blasco, 2021).

The LPSI is the BLP of H
Suppose that mH and μ are equal to zero, and the covariance
matrix P is finite; then, the LPSI (or the BLP of H) is:

E (H|𝐲) = 𝐰′𝐆𝐏−1𝐲 = 𝛃′𝐲 (A3)

where w′G is the covariance between H and y, P−1 is the
inverse of the matrix P and 𝛃′ = 𝐰′𝐆𝐏−1. The assumption
of multivariate normal distribution of H and y is a sufficient
condition for Equation A3 to be linear.

Selection response and correlation
Because 𝛃′ = 𝐰′𝐆𝐏−1, the LPSI selection response is:

𝑅 = 𝑘
√
𝛃′𝑃 β, (A4)

where k is the selection intensity and
√
𝛃′𝑃 β is the standard

deviation of I. Equation A4 predicts the mean improvement
in H attributable to indirect selection on I only when 𝛃′ =
𝐰′𝐆𝐏−1. In similar manner, the correlation between H and
I can be written as:

ρ𝐻𝐼 =
√
𝛃′𝑃 β√
𝐰′𝐆𝐰

. (A5)

All the other terms were defined earlier. Equation A5 is the
proportion of the variance of H that can be attributed to the
regression relationship with I.
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