821 research outputs found

    Critical statistics in a power-law random banded matrix ensemble

    Full text link
    We investigate the statistical properties of the eigenvalues and eigenvectors in a random matrix ensemble with HijijμH_{ij}\sim |i-j|^{-\mu}. It is known that this model shows a localization-delocalization transition (LDT) as a function of the parameter μ\mu. The model is critical at μ=1\mu=1 and the eigenstates are multifractals. Based on numerical simulations we demonstrate that the spectral statistics at criticality differs from semi-Poisson statistics which is expected to be a general feature of systems exhibiting a LDT or `weak chaos'.Comment: 4 pages in PS including 5 figure

    Expansion algorithm for the density matrix

    Full text link
    A purification algorithm for expanding the single-particle density matrix in terms of the Hamiltonian operator is proposed. The scheme works with a predefined occupation and requires less than half the number of matrix-matrix multiplications compared to existing methods at low (90%) occupancy. The expansion can be used with a fixed chemical potential in which case it is an asymmetric generalization of and a substantial improvement over grand canonical McWeeny purification. It is shown that the computational complexity, measured as number of matrix multiplications, essentially is independent of system size even for metallic materials with a vanishing band gap.Comment: 5 pages, 4 figures, to appear in Phys. Rev.

    Multimodal stimulus coding by a gustatory sensory neuron in Drosophila larvae.

    Get PDF
    Accurate perception of taste information is crucial for animal survival. In adult Drosophila, gustatory receptor neurons (GRNs) perceive chemical stimuli of one specific gustatory modality associated with a stereotyped behavioural response, such as aversion or attraction. We show that GRNs of Drosophila larvae employ a surprisingly different mode of gustatory information coding. Using a novel method for calcium imaging in the larval gustatory system, we identify a multimodal GRN that responds to chemicals of different taste modalities with opposing valence, such as sweet sucrose and bitter denatonium, reliant on different sensory receptors. This multimodal neuron is essential for bitter compound avoidance, and its artificial activation is sufficient to mediate aversion. However, the neuron is also essential for the integration of taste blends. Our findings support a model for taste coding in larvae, in which distinct receptor proteins mediate different responses within the same, multimodal GRN

    Algorithms for Lattice QCD with Dynamical Fermions

    Full text link
    We consider recent progress in algorithms for generating gauge field configurations that include the dynamical effects of light fermions. We survey what has been achieved in recent state-of-the-art computations, and examine the trade-offs between performance and control of systematic errors. We briefly review the use of polynomial and rational approximations in Hybrid Monte Carlo algorithms, and some of the theory of on-shell chiral fermions on the lattice. This provides a theoretical framework within which we compare algorithmic alternatives for their implementation; and again we examine the trade-offs between speed and error control.Comment: Review presented at Lattice2004(plenary), Fermilab, June 21-26, 2004. 14 pages, 8 figure

    Searching for chiral logs in the static-light decay constant

    Get PDF
    Using the clover fermion action in unquenched QCD with pion masses as low as 420 MeV, we look for evidence for chiral logs in the static-light decay constant. There is some evidence for a chiral log term, if the original static theory of Eichten and Hill is used. However, the more precise data from the static action of the ALPHA collaboration do not show any evidence for non-linear dependence of the static-light decay constant on the light quark mass. We make some comments on the connection between chiral perturbation theory for decay constants of the pion and static-light meson

    Spin dynamics of Mn12-acetate in the thermally-activated tunneling regime: ac-susceptibility and magnetization relaxation

    Full text link
    In this work, we study the spin dynamics of Mn12-acetate molecules in the regime of thermally assisted tunneling. In particular, we describe the system in the presence of a strong transverse magnetic field. Similar to recent experiments, the relaxation time/rate is found to display a series of resonances; their Lorentzian shape is found to stem from the tunneling. The dynamic susceptibility χ(w)\chi(w) is calculated starting from the microscopic Hamiltonian and the resonant structure manifests itself also in χ(w)\chi(w). Similar to recent results reported on another molecular magnet, Fe8, we find oscillations of the relaxation rate as a function of the transverse magnetic field when the field is directed along a hard axis of the molecules. This phenomenon is attributed to the interference of the geometrical or Berry phase. We propose susceptibility experiments to be carried out for strong transverse magnetic fields to study of these oscillations and for a better resolution of the sharp satellite peaks in the relaxation rates.Comment: 22 pages, 23 figures; submitted to Phys. Rev. B; citations/references adde

    Quantum-classical transition of the escape rate of uniaxial antiferromagnetic particles in an arbitrarily directed field

    Get PDF
    Quantum-classical escape rate transition has been studied for uniaxial antiferromagnetic particles with an arbitrarily directed magnetic field. In the case that the transverse and longitudinal fileds coexist, we calculate the phase boundary line between first- and second-order transitions, from which phase diagrams can be obtained. It is shown that the effects of the applied longitudinal magnetic field on quantum-classical transition vary greatly for different relative magnitudes of the non-compensation.Comment: to be appeared in Phys. Rev.

    Constraining Primordial Non-Gaussianity with High-Redshift Probes

    Get PDF
    We present an analysis of the constraints on the amplitude of primordial non-Gaussianity of local type described by the dimensionless parameter fNLf_{\rm NL}. These constraints are set by the auto-correlation functions (ACFs) of two large scale structure probes, the radio sources from NRAO VLA Sky Survey (NVSS) and the quasar catalogue of Sloan Digital Sky Survey Release Six (SDSS DR6 QSOs), as well as by their cross-correlation functions (CCFs) with the cosmic microwave background (CMB) temperature map (Integrated Sachs-Wolfe effect). Several systematic effects that may affect the observational estimates of the ACFs and of the CCFs are investigated and conservatively accounted for. Our approach exploits the large-scale scale-dependence of the non-Gaussian halo bias. The derived constraints on {fNLf_{\rm NL}} coming from the NVSS CCF and from the QSO ACF and CCF are weaker than those previously obtained from the NVSS ACF, but still consistent with them. Finally, we obtain the constraints on fNL=53±25f_{\rm NL}=53\pm25 (1σ1\,\sigma) and fNL=58±24f_{\rm NL}=58\pm24 (1σ1\,\sigma) from NVSS data and SDSS DR6 QSO data, respectively.Comment: 16 pages, 8 figures, 1 table, Accepted for publication on JCA
    corecore