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Quantum-classical transition of the escape rate of uniaxial antiferromagnetic particles
in an arbitrarily directed field

Bin Zhou,1–3 Ruibao Tao,1 and Shun-Qing Shen2

1Department of Physics, Fudan University, Shanghai 200433, China
2Department of Physics, The University of Hong Kong, Hong Kong, China

3Department of Physics, Hubei University, Wuhan 430062, China
~Received 12 May 2003; published 18 December 2003!

Quantum-classical escape rate transition has been studied for uniaxial antiferromagnetic particles with an
arbitrarily directed magnetic field. In the case that the transverse and longitudinal fields coexist, we calculate
the phase boundary line between first- and second-order transitions, from which phase diagrams can be
obtained. It is shown that the effects of the applied longitudinal magnetic field on quantum-classical transition
vary greatly for different relative magnitudes of the noncompensation.
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Escape from a stable or metastable state at high temp
tures is governed by a classical thermal activation rate
low temperatures close to zero, quantum tunneling beco
relevant. When these two escape rates are equal there e
a crossover temperatureT0 at which a transition betwee
classical and quantum regimes occurs. The study of
quantum-classical transition is an interesting subject wit
long history.1 One of the main issues in this subject is
determine whether the transition is first or second order.
transition was recognized as a smooth second-order on
the quantum-mechanical models of Affleck1 and the cosmo-
logical models of Linde.2 However, it was shown3 that the
smooth transition is not generic. Chudnovsky has sugge
that the order of transition is determined by the behavior
the Euclidean time oscillation periodt(E), whereE is the
energy near the bottom of the Euclidean potential, wh
corresponds to the top of the potential barrier.3 The non-
monotonic behavior of the oscillation period as a function
energy, i.e., the existence of a minimum in thet;E curve,
was proposed as a condition for the first-order transition
quantum-mechanical tunneling.3 Later, a sufficient criterion
for the first-order phase transition was obtained by carry
out the nonlinear perturbation near the sphaleron solutio4

Since the first- and second-order transitions between
quantum and classical behaviors of the escape rates in
systems were introduced by Chudnovsky and Garanin,5,6 the
topic has attracted considerable attention.7–15 Most theoreti-
cal studies have been focused on the ferromagnetic parti
However, most ferromagnetic systems are actually ferrim
netic particles. For instance, both Mn12Ac and Fe8 are char-
acterized by a large spin ground state which originates fr
incomplete compensation of antiferromagnetically coup
spins.16 The strong exchange interaction should be taken
consideration. In Ref. 17 Kim treated the phase transition
ferrimagnetic or antiferromagnetic particles for two gene
forms of the magnetic anisotropy energy. Very recently,
quantum-classical transition in antiferromagnetic partic
with biaxial symmetry in the presence of an applied ma
netic field along the medium axis or along the easy axis w
investigated.18,19 Note that recent work of Chudnovsky an
Garanin postulates dislocations as the main source of
tunneling in Mn12 crystals.20 Their theory shows that whe
the external magnetic field is applied along thec axis of the
0163-1829/2003/68~21!/214423~6!/$20.00 68 2144
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crystal, local rotations of the magnetic anisotropy axis due
dislocations result in the effective local transverse magn
field. Experimental evidence of the effects of dislocations
tunneling has been also reported.21–24Therefore in the study
of the quantum-classical transition of Mn12, the case of co-
existence of the transverse and longitudinal magnetic fiel
worth investigating. Considering the molecular cluster Mn12
actually is ferrimagnetic, the exchange interaction should
also taken into account. In this paper we aim to investig
the quantum-classical transition of the escape rate of unia
antiferromagnetic particles in an arbitrarily directed fie
i.e., the coexistence of the transverse and longitudinal m
netic field. It is shown that the effects of the applied long
tudinal magnetic field on the quantum-classical transit
vary greatly for different relative magnitudes of the nonco
pensation.

We consider a small uniaxial antiferromagnetic partic
with two magnetic sublattices whose magnetizationsm1 and
m2 are coupled by the strong exchange interactionm1
•m2 /x' , wherex' is the perpendicular susceptibility. Th
system of interest has a noncompensation of sublattice
m (5m12m2.0), and easy-axis anisotropy along thez
axis. In the presence of an arbitrarily directed magnetic fie
i.e., the coexistence of a transverse magnetic fieldHx along
the x axis and a longitudinal oneHz along thez axis, the
Euclidean action is written as25

SE~u,f!5VE dtS i
m11m2

g
ḟ2 i

m

g
ḟ cosu1

x̃'

2g2
@~ u̇

1 igHxsinf!21~ḟ sinu1 igHxcosu cosf

2 igHzsinu!2#1K isin2u2mHxsinu cosf

2mHzcosu D , ~1!

whereV is the volume of the particle,g the gyromagnetic
ratio, x̃'5x'(m2 /m1), andK i the longitudinal anisotropy.
The polar coordinateu and the azimuthal coordinatef,
which are the angular components ofm1 in the spherical
©2003 The American Physical Society23-1
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BIN ZHOU, RUIBAO TAO, AND SHUN-QING SHEN PHYSICAL REVIEW B68, 214423 ~2003!
coordinate system, can determine the direction of the N´el
vector. A dot over a symbol denotes a derivative with resp
to the Euclidean timet.

The classical trajectory corresponding to the Euclide
action ~1! is determined by the equations

inḟ sinu1xS 2 ibzḟ sin 2u22ibxḟ cosf sin2u2 ü

1
1

2
ḟ2sin 2u D2

Vu

K i
50, ~2!

2 in u̇ sinu1x~ ibzu̇ sin 2u12ibxu̇ cosf sin2u2f̈ sin2u

2ḟu̇ sin 2u!2
Vf

K i
50, ~3!

where n5m/(K ig), x5x̃' /(K ig
2), bx(z)5gHx(z) , Vu

5]V/]u andVf5]V/]f. The inverted potential is

V~u,f!5K iS 2sin2u12hxsinu cosf12hzcosu

1
xbx

2

2
sin2f1

xbx
2

2
cos2u cos2f1

xbz
2

2
sin2u

2xbxbzsinu cosu cosf D , ~4!

wherehx(z)5Hx(z) /Hc andHc52K i /m. In Fig. 1 the effec-
tive potential 2V(u,f50) is drawn. The minima of the
potential correspond to the equilibrium orientation of t
Néel vector. The metastability condition thatdV(u,0)/du
50 andd2V(u,0)/du250 determines the critical paramete
at which the barrier vanishes.

In the high-temperature regime the sphaleron solution
Eqs.~2! and~3! is (u0 ,f050). u0 is the position of the top
of the potential barrier2V(u0,0), and is determined by
dV(u,0)/duuu0

50 andd2V(u,0)/du2uu0
.0. u0 has a cum-

bersome analytical form and its numerical result will be a
plied below to determine phase boundary lines. Furtherm
its behavior is illustrated in Fig. 2 for givenhx andy. Above,

FIG. 1. The effective potential2V(u,f50).
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y5x/n2(5x̃'K i /m2) and the parametery indicates the rela-
tive magnitude of the noncompensation. For large nonco

pensation (y!1, i.e., m@Ax̃'K i) and for small noncom-

pensation (y@1, i.e., m!Ax̃'K i), the system become
ferromagnetic and nearly compensated antiferromagne
respectively.17 Note thatu05p/2 for hz50. The crossover
behavior of the escape rate of this model from quantum t
neling to thermal activation can be obtained from the dev
tion of the period of the periodic instanton from that of th
sphaleron. To this end we expand (u,f) about the sphaleron
configurationsu0 and f0, i.e., u5u01h(t) and f5f0
1j(t), wheref050. Substituting them into Eqs.~2! and
~3! one yields the following power series equations of t
fluctuation fieldsh andj:

S G1
j~h,j!

G1
h~h,j!

D 1S G2
j~h,j!

G2
h~h,j!

D 1S G3
j~h,j!

G3
h~h,j!

D 1•••50, ~5!

where G1 ,G2 ,G3 , . . . denote terms which contain linea
quadratic, cubic, and higher powers of the small fluctuatio
respectively:

FIG. 2. u0 versushz for some givenhx andy.

FIG. 3. Phase diagramhx(y) for hz50, 0.1, and 0.2.
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G1
j~h,j!5 in sinu0j̇2 ix~bzsin 2u012bxsin2u0!j̇2xḧ

1A1h,

G2
j~h,j!5 in cosu0hj̇22ix~bxsin 2u01bzcos 2u0!hj̇

1
1

2
x sin 2u0j̇21A2j21A4h2,

G3
j~h,j!52

i

2
n sinu0h2j̇12ix~bzsin 2u02bxcos 2u0!h2j̇

1 ixbxsin2u0j2j̇1x cos 2u0hj̇21A3hj2

1A5h3,

G1
h~h,j!5 in sinu0ḣ2 ix~bzsin 2u012bxsin2u0!ḣ

1x sin2u0j̈1B1j,

G2
h~h,j!5 in cosu0hḣ22ix~bxsin 2u01bzcos 2u0!hḣ

1x sin 2u0~ ḣj̇1hj̈!1B2hj,

G3
h~h,j!52

1

2
in sinu0h2ḣ12ix~bzsin 2u0

2bxcos 2u0!h2ḣ1 ixbxsin2u0j2ḣ

1x cos 2u0~2hḣj̇1h2j̈ !1B3h2j1B4j3,
e-
od
rit
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where

A152
Vuu

K i
, A252

Vuff

2K i
, A352

Vuuff

2K i
,

A452
Vuuu

2K i
, A552

Vuuuu

6K i
, ~6!

B15
Vff

K i
, B25

Vuff

K i
, B35

Vuuff

2K i
, B45

Vffff

6K i
. ~7!

It is introduced that Vuu5@]2V/]u2#u5u0 ,f5f0
, Vuff

5@]2V/]u]f2#u5u0 ,f5f0
, and so on.

Denoting dV(t)[„h(t),j(t)…, we have dV(t1b\)
5dV(t) at finite temperature and write it as the Fouri
seriesdV(t)5(n52`

` dVnexp@ivnt#, wherevn52pn/b\.
Since simple analysis shows thath is real andj imaginary,
to the lowest order we write them in the formh
.au1cos(vt) and j. iaf1sin(vt). Herea serves as a per
turbation parameter. Substituting them into Eq.~5! and ne-
glecting terms of order higher thana, we obtain the relation

f1

u1
5

xv6
2 1A1

v6@n22x~bzcosu01bxsinu0!#sinu0

52
v6@n22x~bzcosu01bxsinu0!#sinu0

xv6
2 sin2u02B1

~8!

and the oscillation frequency
v6
2 52

1

2x2
$~A12B1csc2u0!x1@n22x~bzcosu01bxsinu0!#2%

6
1

2x2
A4A1B1x2csc2u01$~A12B1csc2u0!x1@n22x~bzcosu01bxsinu0!#2%2. ~9!
Next, let us write h.au1cos(vt)1h2, and j
. iaf1sin(vt)1ij2, whereh2 andj2 are of the order ofa2.
Inserting them into Eq.~5!, we arrive atv5v1 and

h25a2p01a2p2cos~2vt!, j25a2q2sin~2vt!, ~10!

where the analytic forms of coefficientsp0 , p2, andq2 are
cumbersome, which are listed in the Appendix.

This implies that there is no shift in the oscillation fr
quency. In order to find the change of the oscillation peri
we proceed to the third order of perturbation theory by w
ing h.au1cos(vt)1h21h3, and j. iaf1sin(vt)1ij21ij3,
,
-

whereh3 and j3 are of the order ofa3. Substituting them
again into Eq.~5!, and retaining only the terms up toO(a3),
we have

n4y2~v22v1
2 !~v22v2

2 !5a2
u1

2

4 sin2u0

g~hx ,hz ,y!,

~11!

where

g~hx ,hz ,y!5g1~hx ,hz ,y!1g2~hx ,hz ,y!. ~12!

The forms ofg1(hx ,hz ,y) andg2(hx ,hz ,y) are
3-3
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g1~hx ,hz ,y!52~A11yw2!F3B4l226lhxw sin2u02B322B2~2p̃02 p̃2!13yw2cos 2u012yw2sin 2u0~2p̃01 p̃2!

1
1

l S 22B2q̃212w cosu0~2p̃01 p̃2!24hxyw cos 2u02
1

2
w sinu028hzyw~2p̃01 p̃2!cos 2u0

14yw sin 2u0~hz24hxp̃022hxp̃2!14q̃2yw2sin 2u0D G , ~13!

g2~hx ,hz ,y!5~B12yw2sin2u0!F2l3hxyw sin2u02l2~A313yw2cos 2u0!1lS 24A2q̃222~2p̃01 p̃2!w cosu0

1
3

2
w sinu024q̃2yw2sin 2u014yw cos 2u0~3hx14hzp̃012hzp̃2!24yw sin 2u0~3hz24hxp̃022hxp̃2! D

14A4~2p̃01 p̃2!14q̃2w~4hzy cos 2u014hxy sin 2u02cosu0!13A5G , ~14!
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where w5nv1 and l5f1 /u1. Again, y5x/n2

(5x̃'K i /m2) and the parametery indicates the relative mag

nitude of the noncompensation. Also,p̃0 , p̃2, and q̃2 are
obtained by replacingf1 by lu1 and droppingu1

2 in p0 , p2,
andq2, respectively. It can be shown that forhz50 Eq.~12!
is reduced to the case corresponding to uniaxial antife
magnetic particle with a transverse magnetic field only
been investigated in Ref. 17.

As shown by Chudnovsky,3 if the oscillation periodt is
not a monotonic function ofa, wherea is a function ofE in
the absence of dissipation, the system exhibits a first-o
transition. Thus the periodt(52p/v) in Eq. ~11! should be
less thant1(52p/v1), i.e.,v.v1 for the first-order tran-
sition. It implies thatg(hx ,hz ,y).0 in Eq.~11! for the first-
order transition, andg(hx ,hz ,y)50 determines the phas
boundary between the first- and the second-order transi
In this case the three parametershx ,hz ,y should be treated
simultaneously, which is not a simple problem. In the pres
work we will fix one parameter and then compute the bou
ary curve with the other two parameters. We first solve
~11! numerically to obtain the phase boundary lineshx(y)’s
for several values ofhz , which are plotted in Fig. 3. From
Fig. 3, an immediate observation is that the first-order reg
for a givenhz diminishes asy increases, which shows th
same trend as thehz50 case. Thus it is evident that th
region for the first-order transition is greatly reduced as
system becomes ferrimagnetic and there is no first-o
transition in almost compensated antiferromagnetic partic
The result coincides with Ref. 17. Figure 3 also shows t
with increasinghz the variety of first-order region is not
simple case. For the smally case with increasinghz the first-
order region is shrunk, while for the largery case the longi-
tudinal fieldhz favors occurrence of the first-order transitio
For instance, for the case ofy50.05, the maximum values o
the transverse fieldhx for occurrence of the first-order tran
sition arehx50.203, 0.195, and 0.175 forhz50, 0.1, and
0.2, respectively. On the other hand, the first-order reg
vanishes beyondy.0.46, 0.55, and 0.89 forhz50, 0.1, and
0.2, respectively. This can be qualitatively understood fr
21442
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the consideration that the height of the effective poten
barrier decreases ashz increases, whereas the height i
creases asy increases, therefore there is a competition b
tween the longitudinal field and the relative magnitude of
noncompensation. Wheny50, the fact that the region fo
the first-order transition decreases as the longitudinal fi
increases results from a flattening of the peak of the barrie11

For the smally case~i.e., the large noncompensation!, the
crossover behavior of the ferrimagnetic system still kee
qualitatively that of the ferromagnetic one. However, for t
largery case the exchange interaction plays the role of eff
tive magnetic field and so, for a given small transverse fi
the region for the first-order transition increases as the l
gitudinal field increases. To illustrate further the effect of t
longitudinal fieldhz on quantum-classical transition, we ne
calculate the phase boundary lineshx(hz)’s for several val-
ues ofy, which are shown in Figs. 4 and 5. In Fig. 4, for th
case ofy50 corresponding to uniaxial ferromagnetic sy
tem, the phase boundary line is plotted by a dotted li
Obviously the line coincides with Fig. 13 in Ref. 11, i
which quantum-classical transition in a uniaxial ferroma
netic system with a transverse magnetic field and a long
dinal one was investigated. For the case ofy50.1, the phase
boundary lineshx(hz)’s shift downwards and withhz in-
creasing the critical value ofhx decrease monotonically. Fig
ure 5 gives another case, in which the phase boundary l
hx(hz)’s show a kind of nonmonotonic behavior. For in
stance, for the case ofy50.3, the first-order region vanishe
beyond hx.0.024 for hz50, while the maximum ishx
.0.112 forhz50.332.

It was shown that quantum tunneling will show up
higher temperatures and higher frequencies in antiferrom
netic particles than in ferromagnetic particles of simi
size.25 Moreover, most ferromagnetic systems are ferrima
netic, so nanometer-scale antiferromagnets are more inte
ing from experimental and theoretical aspects. But a deta
comparison between the theory and experiment on quant
classical transition remains a challenging task. It is very i
portant to obtain the information on the magnitude of t
quantityy for observing the first-order transition in real e
3-4
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QUANTUM-CLASSICAL TRANSITION OF THE ESCAPE . . . PHYSICAL REVIEW B 68, 214423 ~2003!
periments. For the typical antiferromagnetic particle withx
;1024, K i;106 erg/cm3, and m;500 emu/cm3, one can
get the quantityy.1024.19 In this case, for the longitudina
field parameterhz50.4, the range of the transverse field p
rameter for observing the first-order transition is 0,hx
&0.127. It is noted that Wensdorferet al. have performed
the switching field measurements on individual ferrimagne
and insulating BaFeCoTiO nanoparticle containing ab
105–106 spins at very low temperature~0.1–6 K!.26 Below
0.4 K, experimental results are quantitatively in agreem
with the predictions of the macroscopic quantum tunnel
theory without dissipation. The BaFeCoTiO nanopartic
have a strong uniaxial magnetocrystalline anisotrop26

Therefore the material is expected as a candidate to inv
gate quantum-classical transition of the escape rate
uniaxial ferrimagnetic or antiferromagnetic particles in
arbitrarily directed field.

FIG. 4. Phase diagramhx(hz) for y50 and 0.1.
21442
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In conclusion, we have investigated quantum-classical
cape rate transition for uniaxial antiferromagnetic parti
with an arbitrarily directed magnetic field, i.e., the coexi
ence of the transverse and longitudinal magnetic fie
There are three parameters which can be controlled by
periment: relative magnitude of the noncompensation
two field parameters. The nonlinear perturbation method
used to obtain various phase diagrams for first- and seco
order transition depending on the three parameters. I
shown that the effects of the applied longitudinal magne
field on quantum-classical transition vary greatly for diffe
ent relative magnitudes of the noncompensation.

The work was supported by the China Postdoctoral S
ence Foundation under Grant No. 2002032138, the Natio
Natural Science Foundation of China under Grant N
10174015 and 10234010, and the Research Grants Co
of Hong Kong under Grant No. HKU7023/03P.

FIG. 5. Phase diagramhx(hz) for y50.2 and 0.3.
APPENDIX

The coefficients in Eq.~10! are deduced by using the softwareMATHEMATICA3.0:

p05
1

2A1
@f1cosu0~nu1v1xf1v1

2 sinu0!1A2f1
22A4u1

222xvu1f1~bzcos 2u01bxsin 2u0!#,

p25„B1~A4u1
21A2f1

2!12B2nvu1f1sinu028bz
2x2u1

2v2cos3u0sinu022xv~2B2bxu1f11B1bzu1f112A4u1
2v12A2f1

2v!

3sin2u018bzx
2u1v2~bxu11vf1!sin4u024bznxu1

2v2sin3u012bzxu1v cos2u0@B1f126bxxu1v22xf1v214xf1v1
2

12x~3bxu1v1f1v222f1v1
2 !cos 2u014nu1v sinu0#2cosu0$B1nu1f1v1@2u1v~n2u1v12B2bzxf1!

2B1xf1~4bxu1v2f1v1
2 !#sinu024nxu1v@3bxu1v1f1~v222v1

2 !#sin2u014x2v@4bx
2u1

2v14bxu1f1~v22v1
2 !

2v~2bz
2u1

21f1
2v1

2 !#sin3u0%…/$22B1~A114xv2!18v2@A1x1~n22bzx cosu0!214x2v2#sin2u0

132bxxv2~2bzx cosu02n!sin3u0132bx
2x2v2sin4u0%,

q25$u1~A114xv2!@B2f12nu1v cosu012xu1v~bxsin 2u01bzcos 2u0!22xf1v1
2 sin 2u0#

2v sinu0@n22x~bzcosu01bxsinu0!#@2nu1f1v cosu024xu1f1v~bxsin 2u01bzcos 2u0!1xf1
2v1

2 sin 2u022A4u1
2

22A2f1
2#%/$8v2sin2u0@n22x~bzcosu01bxsinu0!#212~A114xv2!~4xv2sin2u02B1!%.
3-5
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