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Quantum-classical transition of the escape rate of uniaxial antiferromagnetic particles
in an arbitrarily directed field
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Quantum-classical escape rate transition has been studied for uniaxial antiferromagnetic particles with an
arbitrarily directed magnetic field. In the case that the transverse and longitudinal fields coexist, we calculate
the phase boundary line between first- and second-order transitions, from which phase diagrams can be
obtained. It is shown that the effects of the applied longitudinal magnetic field on quantum-classical transition
vary greatly for different relative magnitudes of the noncompensation.
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Escape from a stable or metastable state at high temperarystal, local rotations of the magnetic anisotropy axis due to
tures is governed by a classical thermal activation rate. Atislocations result in the effective local transverse magnetic
low temperatures close to zero, quantum tunneling becomdgeld. Experimental evidence of the effects of dislocations on
relevant. When these two escape rates are equal there exisimneling has been also reportéd?* Therefore in the study
a crossover temperatufg, at which a transition between of the quantum-classical transition of Mn the case of co-
classical and quantum regimes occurs. The study of thexistence of the transverse and longitudinal magnetic field is
guantum-classical transition is an interesting subject with avorth investigating. Considering the molecular cluster;Mn
long history! One of the main issues in this subject is to actually is ferrimagnetic, the exchange interaction should be
determine whether the transition is first or second order. Thalso taken into account. In this paper we aim to investigate
transition was recognized as a smooth second-order one the quantum-classical transition of the escape rate of uniaxial
the quantum-mechanical models of Affléand the cosmo- antiferromagnetic particles in an arbitrarily directed field,
logical models of Lind&. However, it was showhthat the i.e., the coexistence of the transverse and longitudinal mag-
smooth transition is not generic. Chudnovsky has suggestetktic field. It is shown that the effects of the applied longi-
that the order of transition is determined by the behavior ofudinal magnetic field on the quantum-classical transition
the Euclidean time oscillation perioe(E), whereE is the  vary greatly for different relative magnitudes of the noncom-
energy near the bottom of the Euclidean potential, whichpensation.
corresponds to the top of the potential barfidthe non- We consider a small uniaxial antiferromagnetic particle
monotonic behavior of the oscillation period as a function ofwith two magnetic sublattices whose magnetizationsand
energy, i.e., the existence of a minimum in the E curve, m, are coupled by the strong exchange interactiop
was proposed as a condition for the first-order transition in m,/y, , wherey, is the perpendicular susceptibility. The
quantum-mechanical tunnelidg.ater, a sufficient criterion system of interest has a noncompensation of sublattice with
for the first-order phase transition was obtained by carryingn (=m;—m,>0), and easy-axis anisotropy along the
out the nonlinear perturbation near the sphaleron soldtion. axis. In the presence of an arbitrarily directed magnetic field,

Since the first- and second-order transitions between thie., the coexistence of a transverse magnetic fig|calong
quantum and classical behaviors of the escape rates in spihe x axis and a longitudinal onél, along thez axis, the
systems were introduced by Chudnovsky and Garafithe  Euclidean action is written &%
topic has attracted considerable attentiot?.Most theoreti-
cal studies have been focused on the ferromagnetic particles.

However, most ferromagnetic systems are actually ferrimag- my+m,. m. XL -
netic particles. For instance, both MAc and Fg are char- SE(9,¢>):VJ dT( ! Td)—l ;(ﬁ cosf+ F[(a
acterized by a large spin ground state which originates from Y
incomplete compensation of antiferromagnetically coupled +iyH,sing)2+ (¢ sinf+iyH,cosd cose
spins'® The strong exchange interaction should be taken into

consideration. In Ref. 17 Kim treated the phase transition in —iyH,sing)%]+ K”sinza—mHXsinacosqS
ferrimagnetic or antiferromagnetic particles for two general

forms of the magnetic anisotropy energy. Very recently, the —mHZcosa), 1)

guantum-classical transition in antiferromagnetic particles

with biaxial symmetry in the presence of an applied mag-

netic field along the medium axis or along the easy axis was ] ) )
investigated®*® Note that recent work of Chudnovsky and WhereV is the volume of the particley the gyromagnetic
Garanin postulates dislocations as the main source of spifatio, x, =y, (m,/m;), andK; the longitudinal anisotropy.
tunneling in Mn, crystals?®® Their theory shows that when The polar coordinate? and the azimuthal coordinate,
the external magnetic field is applied along thaxis of the  which are the angular components mwif, in the spherical
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coordinate system, can determine the direction of thelNe
vector. A dot over a symbol denotes a derivative with respec%

to the Euclidean time.

The classical trajectory corresponding to the EuclidearP€nsation ¥<1,

action (1) is determined by the equations

ing sing+ x( —ib,¢ sin 26— 2ib,¢ cose sirfo— 6

)

—in@sin+x(ib,0 sin 20+ 2ib, 6 cos¢ Sito— ¢ Sint o

o Vg
—¢0sin20)— —=0,
Kj

where n=m/(Ky), X:;(L /(KWZ), Pyz= YHx@» Vo
=dVI360 andV 4= dV/d¢. The inverted potential is

V(8,¢)=K|| —sirfg+2h,sin cosp+ 2h,cosd

)

=x/n?(=, K|/m?) and the parametsrindicates the rela-
ive magnitude of the noncompensation. For large noncom-

i.e., m>\/y,K;) and for small noncom-
pensation y>1, ie.,, m< \/}LKH), the system becomes
ferromagnetic and nearly compensated antiferromagnetic,
respectively’ Note thatd,= /2 for h,=0. The crossover
behavior of the escape rate of this model from quantum tun-
neling to thermal activation can be obtained from the devia-
tion of the period of the periodic instanton from that of the
sphaleron. To this end we expand, ¢) about the sphaleron
configurations 6y and ¢, i.e., 6=0y+ n(7) and ¢= ¢

+ &(7), where ¢pg=0. Substituting them into Eq$2) and

(3) one yields the following power series equations of the
fluctuation fieldsn and &:

(Giw,a) +<G§(77,§)) +( Gi(7,€)
G{(7n,¢) GJ(n,é) Gi(7,é)

where G1,G,,G3, ... denote terms which contain linear,
quadratic, cubic, and higher powers of the small fluctuations,
respectively:

)+-..=o, )

2
x by

2

2

xb xb
+ 75|n2¢>+ TXCO§0CO§¢+ TZS|n26

—xhyb,sin 6 cosé cose |,

(4)

whereh, ) =H, /H. andH = 2K /m. In Fig. 1 the effec-
tive potential —=V(6,¢=0) is drawn. The minima of the

potential correspond to the equilibrium orientation of the x

Neel vector. The metastability condition thatv(6,0)/dé
=0 andd?V(6,0)/d#?>=0 determines the critical parameters
at which the barrier vanishes.

In the high-temperature regime the sphaleron solution of
Eqgs.(2) and(3) is (6y,¢0=0). 6, is the position of the top
of the potential barrier—V(6,,0), and is determined by
dV(6,0)/d6|,,=0 andd?V(6,0)/d¢?[, >0. 6, has a cum-
bersome analytical form and its numerical result will be ap-
plied below to determine phase boundary lines. Furthermore,
its behavior is illustrated in Fig. 2 for givem, andy. Above,
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GE(7,€) =in sinBp&—ix(b,sin 20+ 2b,sirP6) E— X7 where
+AL, A Vo _ Vage __ Vinge
1= - ' 37
_ . _ . K 2K| 2K|
Gg( 7,€)=in cosfyné— 2ix(b,sin 264+ b,cos 20,) né
Y, v
1 . A= — 000’ A= — aaaey 6)
+ 5% 8in 20062+ Aok2+ Agrp’, 42K > 6K
- v v Y% Y,
i L , . _Ves _Vodd _Vo0pe _ Vb0
Gi(n,§)=—§n sin 6”&+ 2ix(b,sin 26— b,cos 20o) 7°¢ B1 K’ B2 K’ Bs 2K, 7Y 8K )
+ixXb,SiM? 02 E+ X COS 2 nE2+ Agné? It is introduced thatV=[dV/d6%]g—g 4=, Voss
+ A =[6*V1303¢?1y- g, ¢~ 4, @nd SO ON.

Denoting 6Q(7)=(5(7),&(7)), we have 8Q(7+ Bh)
o ) ) . =60 () at finite temperature and write it as the Fourier
GJ(7,€)=in sinfyn—ix(b,sin 26,+ 2b,sirf6y) 7 serieséQ(7)=2,__,.8Qexdiow, 7], where w,=2mn/Bh.
Since simple analysis shows thatis real andé imaginary,
to the lowest order we write them in the formy
. _ =a#,cosr) and é=ia¢,Sin(w7). Herea serves as a per-
GZ(7,€)=in costynn— 2iX(bysin 26¢+b,cos 205) 7 turbation parameter. Substituting them into E§). and ne-
glecting terms of order higher tham we obtain the relation

+ X SirPlpé+ By,

+X Sin 200( né+ )+ Byyé,
¢1 Xwi-l—Al

1 . —= - -
Gl 79, &)=~ Ein sin o 7% 7+ 2ix(b,sin 26, 0, w+[n—2x(b,c0s0y+ bysinby)]sin b,

w+[N—2x(b,cos6y+ bysin 6y) ]sin 6,

—bycoS 26) 7%+ ixb,Sir pé% - Xw? sit6,— B K
+ 0 1

+X €S Wo(2né+ 72E) + By Pé+ B, &l and the oscillation frequency

1
wi=— ;{(Al— B,csC6o)x+[n—2x(b,cosfy+ bysin6y) 1%
X

1
i;\/4Alle2csc260+{(Al— B1CSC0y)x+[n—2x(b,c0s6y+ b,sin 65)1%}2. 9
X

Next, let us write np=af,coswn+7, and &  wherez; and¢; are of the order of®. Substituting them
=jag,sin(wn)+i&, wherey, and&, are of the order of?2. again into Eq(5), and retaining only the terms up @(a®),
Inserting them into Eq(5), we arrive atw=w, and we have
61

4 sirt 6,

g(hy,h;.y),
(12)

2 2\ _
no=a%po+a2pcos2an), £=al,si2em), (10) ny*o-wl) ('~ wl)=a®

where the analytic forms of coefficienpg, p,, andq, are  where
cumbersome, which are listed in the Appendix.

This implies that there is no shift in the oscillation fre-
guency. In order to find the change of the oscillation period,
we proceed to the third order of perturbation theory by writ-
ing n=af,cosn)+n+ 7, and é=ia¢p sin(wn)+ié&+i&,  The forms ofg,(hy,h,,y) andg,(h,,h,,y) are

g(hy,h;,y)=g1(hy,h,,y) +92(hy,h;,y). (12
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g1(hy,h,,y)=—(A;+yw?)| 3B,02—6Xh,w sinP6— Bs— 2B,(2pg— Pa) + 3yW2cos 205+ 2y w?sin 26,(2po+ P2)

- - o~ 1 - o~
—2B5g,+ 2w coshy(2pg+ p2) — 4hyyw cos 205— EW sinfp— 8h,yw(2py+ p,)cos 24,

1
+_
A

+4ywsin 26o(h,— 4h,po— 2h,p,) + 4G,y w?sin 200) } , (13

go(hy,h,,y)= (Bl—ywzsinzeo)[Zﬁhxywsinzao— M2(Az+3yw2cos 205) + N | —4A,0,— 2(2pg+ P2)W COSHy

3 ~ ~ ~ ~ ~
+ EW Sin 6y — 40,y W2sin 26+ 4yw cos 20o(3h,+ 4h,py+ 2h,p,) — 4ywsin 26,(3h,— 4h,po— 2h,p,)

+4A4(2po+ P,) +40,W(4h,y cos 20,+ 4h,y sin 26,— cosé,) + 3A5} , (14)

where w=nw, and \=¢,/0;. Again, y=x/n? the consideration that the height of the effective potential

(ZLK”/mZ) and the parametgrindicates the relative mag- barrier decreases ds, increases, whereas the height in-
nitude of the noncompensation. AlSh.. .. andd, are  C'€@Ses ay increases, therefore there is a competition be-

) comp ' Po. P2, 5. 92 tween the longitudinal field and the relative magnitude of the
obtained by replacing, by \ 6, and droppingd; in pg, P2,

. noncompensation. Wheyp=0, the fact that the region for
andg;, respectively. It can be shown that floy=0 Eq.(12) e first-order transition decreases as the longitudinal field

is reduced to the case corresponding to uniaxial antiferropcreases results from a flattening of the peak of the bafrier.
magnetic particle with a transverse magnetic field only hagor the smally case(i.e., the large noncompensatjorthe
been investigated in Ref. 17. crossover behavior of the ferrimagnetic system still keeps
As shown by Chudnovskyif the oscillation periodr is  qualitatively that of the ferromagnetic one. However, for the
not a monotonic function o&, wherea is a function ofE in  |argery case the exchange interaction plays the role of effec-
the absence of dissipation, the system exhibits a first-ordetve magnetic field and so, for a given small transverse field
transition. Thus the period(=2#/w) in Eq. (11) should be  the region for the first-order transition increases as the lon-
less thanr, (=27/w,), i.e.,w>w, for the first-order tran-  gitudinal field increases. To illustrate further the effect of the
sition. It implies thaig(hy ,h,,y)>0 in Eq.(11) for the first-  longitudinal fieldh, on quantum-classical transition, we next
order transition, andy(hy,h,,y)=0 determines the phase calculate the phase boundary linegh,)’s for several val-
boundary between the first- and the second-order transitiomes ofy, which are shown in Figs. 4 and 5. In Fig. 4, for the
In this case the three parametéxsh,,y should be treated case ofy=0 corresponding to uniaxial ferromagnetic sys-
simultaneously, which is not a simple problem. In the presentem, the phase boundary line is plotted by a dotted line.
work we will fix one parameter and then compute the bound-Obviously the line coincides with Fig. 13 in Ref. 11, in
ary curve with the other two parameters. We first solve Eqwhich quantum-classical transition in a uniaxial ferromag-
(11) numerically to obtain the phase boundary lifggy)’s  netic system with a transverse magnetic field and a longitu-
for several values oh,, which are plotted in Fig. 3. From dinal one was investigated. For the case/ ef0.1, the phase
Fig. 3, an immediate observation is that the first-order regiorboundary linesh,(h,)’s shift downwards and witth, in-
for a givenh, diminishes asy increases, which shows the creasing the critical value df, decrease monotonically. Fig-
same trend as thb,=0 case. Thus it is evident that the ure 5 gives another case, in which the phase boundary lines
region for the first-order transition is greatly reduced as theh,(h,)’s show a kind of nonmonotonic behavior. For in-
system becomes ferrimagnetic and there is no first-ordestance, for the case gf=0.3, the first-order region vanishes
transition in almost compensated antiferromagnetic particlesseyond h,=0.024 for h,=0, while the maximum ish,
The result coincides with Ref. 17. Figure 3 also shows that=0.112 forh,=0.332.
with increasingh, the variety of first-order region is not a It was shown that quantum tunneling will show up at
simple case. For the smallcase with increasinp, the first-  higher temperatures and higher frequencies in antiferromag-
order region is shrunk, while for the larggicase the longi- netic particles than in ferromagnetic particles of similar
tudinal fieldh, favors occurrence of the first-order transition. size?® Moreover, most ferromagnetic systems are ferrimag-
For instance, for the case g 0.05, the maximum values of netic, so nanometer-scale antiferromagnets are more interest-
the transverse fieltl, for occurrence of the first-order tran- ing from experimental and theoretical aspects. But a detailed
sition areh,=0.203, 0.195, and 0.175 fdr,=0, 0.1, and comparison between the theory and experiment on quantum-
0.2, respectively. On the other hand, the first-order regiortlassical transition remains a challenging task. It is very im-
vanishes beyong=0.46, 0.55, and 0.89 fdr,=0, 0.1, and portant to obtain the information on the magnitude of the
0.2, respectively. This can be qualitatively understood fromquantityy for observing the first-order transition in real ex-
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In conclusion, we have investigated quantum-classical es-
cape rate transition for uniaxial antiferromagnetic particle
with an arbitrarily directed magnetic field, i.e., the coexist-
ence of the transverse and longitudinal magnetic fields.
; ; yEIsE There are three parameters which can be controlled by ex-
rameter for observing the first-order transition is<B,  periment: relative magnitude of the noncompensation and
=0.127. It is noted that Wensdorfet al. have performed 1 field parameters. The nonlinear perturbation method is
the switching field measurements on individual ferrimagnetiq,sed to obtain various phase diagrams for first- and second-
and insulating BaFeCoTiO nanoparticle contg(isning aboufyger transition depending on the three parameters. It is
10°-10° spins at very low temperatur®.1-6 K. Below  ghown that the effects of the applied longitudinal magnetic
0.4 K, experimental results are quantitatively in agreemenfie|q on quantum-classical transition vary greatly for differ-

with the predictions of the macroscopic quantum tunnelingss rejative magnitudes of the noncompensation.
theory without dissipation. The BaFeCoTiO nanoparticles

have a strong uniaxial magnetocrystalline anisotfdpy.  The work was supported by the China Postdoctoral Sci-

Therefore the material is expected as a candidate to investence Foundation under Grant No. 2002032138, the National
gate quantum-classical transition of the escape rate dflatural Science Foundation of China under Grant Nos.

uniaxial ferrimagnetic or antiferromagnetic particles in an10174015 and 10234010, and the Research Grants Council
arbitrarily directed field. of Hong Kong under Grant No. HKU7023/03P.

periments. For the typical antiferromagnetic particle with
~10"%, K;~10° erg/cn?, and m~500 emu/cm, one can
get the quantityy=10"“.1° In this case, for the longitudinal
field parameteh,=0.4, the range of the transverse field pa-

|
APPENDIX

The coefficients in Eq(10) are deduced by using the softwangrHEMATICA3.0:

pozziAl[qslcoseo(n 010+ X102 SiNO) + Ay p2— A, 02— 2Xw 0, 1 (b,COS 200+ bysin 26)],

Po=(B1(A4602+ Ayh?) + 2B,Nw B 1Sin B — 8b2x2 05 >COS BySin g — 2Xw(2B,b, 01 1+ B1b, 01 b1+ 2A, 02w+ 2A, 2 w)
X sir? 0+ 8b,x2 0, w?(by 01+ w ¢y ) st — 4b NXx 03 w?SiNt fy+ 2b,x 01 0 COS o[ By h1 — 6b,X 010 — 2X b 0+ AX p1 02
+2X(3by 010+ Prw’— 2107 )COS 260+ 4N b1 w Sin By] — c0SO{ BN 011w+ [ 20, w(N? 610+ 2B,b,x 1)
~B1X¢h1(4by 010~ $107)]SiN g — AnX0; [ 3D B0+ i (P — 27 ) ISINP g+ 4X%w[ 4D 67w + 40, 0; 1 (0* — wF)
— 0(2b262+ 2 w2 )]SI o} )| — 2B (A1 + 4xw?) + 8w?[ Ax+ (N—2b,x cosfy)?+ 4x2w?]sirf 6,
+32b,xw?(2b,x cosy— N)sint y+ 32b2x%w?sin’ 6},

02={01(A;+4xw?)[Byd;—NOw coSby+ 2x 0, w(b,sin 204+ b,c0S 205) — 2X ;1 w? Sin 26,]
—  Sin B[ N— 2x(b,C0SHy+ bysin 65) 1[ 2N 61 1w COSHy— 4X 0, b1 w(bySin 200+ b,C0S 260,) + X P w? Sin 200— 2A, 63

—2A, 211 {8w?sir? o N— 2x(b,C0SHy+ b,sin 6) 12+ 2( A, + 4xw?) (4xw?sir y— B1)}.
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