1,982 research outputs found

    Modification of PCV-2 virulence by substitution of the genogroup motif of the capsid protein

    Get PDF
    Porcine circovirus type 2 (PCV-2) is the causal agent of the post-weaning multisystemic wasting syndrome (PMWS). PCV-2 are small single-stranded circular DNA viruses clustered into two main genogroups: PCV-2a and PCV-2b. Each genogroup present a specific highly-conserved motif of six amino acids (between amino acids 86 and 91) in the PCV-2 capsid protein. The aim of this study was to verify whether the motif located in the capsid protein and specific to each PCV-2 genogroup contributes to virulence. Two parental DNA clones, PCV-2a and PCV-2b, were constructed as well as two mutants DNA clones, PCV-2a/motif 2b and PCV-2b/motif 2a by exchanging the capsid motif of each genogroup. The four DNA clones were characterized in vitro as well as in vivo. Cells transfected by the four DNA clones produced infectious viruses. In specific-pathogen-free piglets transfected by the four infectious DNA clones, PCV-2b/motif 2a virulence was not attenuated while the PCV-2a/motif 2b virulence was drastically reduced compared to their parent virulence. These results suggest that the amino acids between positions 86 and 91 of the capsid protein are determinant for the virulence of isolates. However, the environment of this motif seems also involved

    Postprandial morphological response of the intestinal epithelium of the Burmese python (Python molurus)

    Full text link
    The postprandial morphological changes of the intestinal epithelium of Burmese pythons were examined using fasting pythons and at eight time points after feeding. In fasting pythons, tightly packed enterocytes possess very short microvilli and are arranged in a pseudostratified fashion. Enterocyte width increases by 23% within 24 h postfeeding, inducing significant increases in villus length and intestinal mass. By 6 days postfeeding, enterocyte volume had peaked, following as much as an 80% increase. Contributing to enterocyte hypertrophy is the cellular accumulation of lipid droplets at the tips and edges of the villi of the proximal and middle small intestine, but which were absent in the distal small intestine. At 3 days postfeeding, conventional and environmental scanning electron microscopy revealed cracks and lipid extrusion along the narrow edges of the villi and at the villus tips. Transmission electron microscopy demonstrated the rapid postprandial lengthening of enterocyte microvilli, increasing 4.8-fold in length within 24 h, and the maintaining of that length through digestion. Beginning at 24 h postfeeding, spherical particles were found embedded apically within enterocytes of the proximal and middle small intestine. These particles possessed an annular-like construction and were stained with the calcium-stain Alizarine red S suggesting that they were bone in origin. Following the completion of digestion, many of the postprandial responses were reversed, as observed by the atrophy of enterocytes, the shortening of villi, and the retraction of the microvilli. Further exploration of the python intestine will reveal the underlying mechanisms of these trophic responses and the origin and fate of the engulfed particles

    Methicillin-Resistant Coagulase-Negative Staphylococci in the Community: High Homology of SCCmec IVa between Staphylococcus epidermidis and Major Clones of Methicillin-Resistant Staphylococcus aureus

    Get PDF
    Background. Data on community spread of methicillin-resistant coagulase-negative staphylococci (MR-CoNS) are scarce. We assessed their potential role as a reservoir of staphylococcal cassette chromosome mec (SCCmec) IVa, the leading SCCmec subtype in community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). Methods. Nasal carriage of MR-CoNS was prospectively investigated in 291 adults at hospital admission. MR-CoNS were characterized by SCCmec typing, long-range polymerase chain reaction (PCR) for SCCmec IV, and multiple-locus variable-number tandem repeat analysis (MLVA) for Staphylococcus epidermidis (MRSE) strains. Three SCCmec IVa elements were fully sequenced. Results. The carriage rate of MR-CoNS was 19.2% (25.9% and 16.5% in patients with and patients without previous exposure to the health care system, respectively; P = .09). MR-CoNS strains (n=83, including 58 MRSE strains with highly heterogeneous MLVA patterns) carried SCCmec type IVa (n=9, all MRSE), other SCCmec IV subtypes (n=9, including 7 MRSE), other SCCmec types (n=15), and nontypeable SCCmec (n=50). Long-range PCR indicated structural homology between SCCmec IV in MRSE and that in MRSA. Complete sequences of SCCmec IVa from 3 MRSE strains were highly homologous to those available for CA-MRSA, including major clones USA300 and USA400. Conclusions. MR-CoNS are probably disseminated in the community, notably in subjects without previous exposure to the health care system. MRSE, the most prevalent species, may act as a reservoir of SCCmec IVa for CA-MRS

    CD4+ T helper cells play a key role in maintaining diabetogenic CD8+ T cell function in the pancreas

    Get PDF
    Autoreactive CD8+ and CD4+ T cells have been assigned independent key roles in the destruction of insulin-producing beta cells resulting in type 1 diabetes. Although CD4 help for the generation of efficient CD8+ T cell responses in lymphoid tissue has been extensively described, whether these two cell populations cooperate in islet destruction in situ remains unclear. By using intravital 2-photon microscopy in a mouse model of diabetes, we visualized both effector T cell populations in the pancreas during disease onset. CD4+ T helper cells displayed a much higher arrest in the exocrine tissue than islet-specific CD8+ T cells. This increased arrest was major histocompatibility complex (MHC) class II-dependent and locally correlated with antigen-presenting cell recruitment. CD8+ T cells deprived of continued CD4 help specifically in the pancreas, through blocking MHC class II recognition, failed to maintain optimal effector functions, which contributed to hamper diabetes progression. Thus, we provide novel insight in the cellular mechanisms regulating effector T cell functionality in peripheral tissues with important implications for immunotherapies

    IL-2 Mediates CD4+ T Cell Help in the Breakdown of Memory-Like CD8+ T Cell Tolerance under Lymphopenic Conditions

    Get PDF
    Background: Lymphopenia results in the proliferation and differentiation of naïve T cells into memory-like cells in the apparent absence of antigenic stimulation. This response, at least in part due to a greater availability of cytokines, is thought to promote anti-self responses. Although potentially autoreactive memory-like CD8 + T cells generated in a lymphopenic environment are subject to the mechanisms of peripheral tolerance, they can induce autoimmunity in the presence of antigen-specific memory-like CD4 + T helper cells. Methodology/Principal Findings: Here, we studied the mechanisms underlying CD4 help under lymphopenic conditions in transgenic mice expressing a model antigen in the beta cells of the pancreas. Surprisingly, we found that the self-reactivity mediated by the cooperation of memory-like CD8 + and CD4 + T cells was not abrogated by CD40L blockade. In contrast, treatment with anti-IL-2 antibodies inhibited the onset of autoimmunity. IL-2 neutralization prevented the CD4-mediated differentiation of memory-like CD8 + T cells into pathogenic effectors in response to self-antigen cross-presentation. Furthermore, in the absence of helper cells, induction of IL-2 signaling by an IL-2 immune complex was sufficient to promote memory-like CD8 + T cell self-reactivity. Conclusions/Significance: IL-2 mediates the cooperation of memory-like CD4 + and CD8 + T cells in the breakdown of crosstolerance, resulting in effector cytotoxic T lymphocyte differentiation and the induction of autoimmune disease

    A bona fide La protein is required for embryogenesis in Arabidopsis thaliana

    Get PDF
    Searches in the Arabidopsis thaliana genome using the La motif as query revealed the presence of eight La or La-like proteins. Using structural and phylogenetic criteria, we identified two putative genuine La proteins (At32 and At79) and showed that both are expressed throughout plant development but at different levels and under different regulatory conditions. At32, but not At79, restores Saccharomyces cerevisiae La nuclear functions in non-coding RNAs biogenesis and is able to bind to plant 3′-UUU-OH RNAs. We conclude that these La nuclear functions are conserved in Arabidopsis and supported by At32, which we renamed as AtLa1. Consistently, AtLa1 is predominantly localized to the plant nucleoplasm and was also detected in the nucleolar cavity. The inactivation of AtLa1 in Arabidopsis leads to an embryonic-lethal phenotype with deficient embryos arrested at early globular stage of development. In addition, mutant embryonic cells display a nucleolar hypertrophy suggesting that AtLa1 is required for normal ribosome biogenesis. The identification of two distantly related proteins with all structural characteristics of genuine La proteins suggests that these factors evolved to a certain level of specialization in plants. This unprecedented situation provides a unique opportunity to dissect the very different aspects of this crucial cellular activity

    Rapid response to the M_w 4.9 earthquake of November 11, 2019 in Le Teil, Lower Rhône Valley, France

    Get PDF
    On November 11, 2019, a Mw 4.9 earthquake hit the region close to Montelimar (lower Rhône Valley, France), on the eastern margin of the Massif Central close to the external part of the Alps. Occuring in a moderate seismicity area, this earthquake is remarkable for its very shallow focal depth (between 1 and 3 km), its magnitude, and the moderate to large damages it produced in several villages. InSAR interferograms indicated a shallow rupture about 4 km long reaching the surface and the reactivation of the ancient NE-SW La Rouviere normal fault in reverse faulting in agreement with the present-day E-W compressional tectonics. The peculiarity of this earthquake together with a poor coverage of the epicentral region by permanent seismological and geodetic stations triggered the mobilisation of the French post-seismic unit and the broad French scientific community from various institutions, with the deployment of geophysical instruments (seismological and geodesic stations), geological field surveys, and field evaluation of the intensity of the earthquake. Within 7 days after the mainshock, 47 seismological stations were deployed in the epicentral area to improve the Le Teil aftershocks locations relative to the French permanent seismological network (RESIF), monitor the temporal and spatial evolution of microearthquakes close to the fault plane and temporal evolution of the seismic response of 3 damaged historical buildings, and to study suspected site effects and their influence in the distribution of seismic damage. This seismological dataset, completed by data owned by different institutions, was integrated in a homogeneous archive and distributed through FDSN web services by the RESIF data center. This dataset, together with observations of surface rupture evidences, geologic, geodetic and satellite data, will help to unravel the causes and rupture mechanism of this earthquake, and contribute to account in seismic hazard assessment for earthquakes along the major regional Cévenne fault system in a context of present-day compressional tectonics

    Genetic Determination and Linkage Mapping of Plasmodium falciparum Malaria Related Traits in Senegal

    Get PDF
    Plasmodium falciparum malaria episodes may vary considerably in their severity and clinical manifestations. There is good evidence that host genetic factors contribute to this variability. To date, most genetic studies aiming at the identification of these genes have used a case/control study design for severe malaria, exploring specific candidate genes. Here, we performed a family-based genetic study of falciparum malaria related phenotypes in two independent longitudinal survey cohorts, as a first step towards the identification of genes and mechanisms involved in the outcome of infection. We studied two Senegalese villages, Dielmo and Ndiop that differ in ethnicity, malaria transmission and endemicity. We performed genome-scan linkage analysis of several malaria-related phenotypes both during clinical attacks and asymptomatic infection. We show evidence for a strong genetic contribution to both the number of clinical falciparum malaria attacks and the asymptomatic parasite density. The asymptomatic parasite density showed linkage to chromosome 5q31 (LOD = 2.26, empirical p = 0.0014, Dielmo), confirming previous findings in other studies. Suggestive linkage values were also obtained at three additional chromosome regions: the number of clinical malaria attacks on chromosome 5p15 (LOD = 2.57, empirical p = 0.001, Dielmo) and 13q13 (LOD = 2.37, empirical p = 0.0014 Dielmo), and the maximum parasite density during asymptomatic infection on chromosome 12q21 (LOD = 3.1, empirical p<10−4, Ndiop). While regions of linkage show little overlap with genes known to be involved in severe malaria, the four regions appear to overlap with regions linked to asthma or atopy related traits, suggesting that common immune related pathways may be involved

    Cartography of Methicillin-Resistant S. aureus Transcripts: Detection, Orientation and Temporal Expression during Growth Phase and Stress Conditions

    Get PDF
    BACKGROUND: Staphylococcus aureus is a versatile bacterial opportunist responsible for a wide spectrum of infections. The severity of these infections is highly variable and depends on multiple parameters including the genome content of the bacterium as well as the condition of the infected host. Clinically and epidemiologically, S. aureus shows a particular capacity to survive and adapt to drastic environmental changes including the presence of numerous antimicrobial agents. Mechanisms triggering this adaptation remain largely unknown despite important research efforts. Most studies evaluating gene content have so far neglected to analyze the so-called intergenic regions as well as potential antisense RNA molecules. PRINCIPAL FINDINGS: Using high-throughput sequencing technology, we performed an inventory of the whole transcriptome of S. aureus strain N315. In addition to the annotated transcription units, we identified more than 195 small transcribed regions, in the chromosome and the plasmid of S. aureus strain N315. The coding strand of each transcript was identified and structural analysis enabled classification of all discovered transcripts. RNA purified at four time-points during the growth phase of the bacterium allowed us to define the temporal expression of such transcripts. A selection of 26 transcripts of interest dispersed along the intergenic regions was assessed for expression changes in the presence of various stress conditions including pH, temperature, oxidative shocks and growth in a stringent medium. Most of these transcripts showed expression patterns specific for the defined stress conditions that we tested. CONCLUSIONS: These RNA molecules potentially represent important effectors of S. aureus adaptation and more generally could support some of the epidemiological characteristics of the bacterium
    corecore