8 research outputs found

    Ortholog genes from cactophilic Drosophila provide insight into human adaptation to hallucinogenic cacti

    Get PDF
    Cultural transformations of lifestyles and dietary practices have been key drivers of human evolution. However, while most of the evidence of genomic adaptations is related to the hunter-gatherer transition to agricultural societies, little is known on the influence of other major cultural manifestations. Shamanism is considered the oldest religion that predominated throughout most of human prehistory and still prevails in many indigenous populations. Several lines of evidence from ethno-archeological studies have demonstrated the continuity and importance of psychoactive plants in South American cultures. However, despite the well-known importance of secondary metabolites in human health, little is known about its role in the evolution of ethnic differences. Herein, we identified candidate genes of adaptation to hallucinogenic cactus in Native Andean populations with a long history of shamanic practices. We used genome-wide expression data from the cactophilic fly Drosophila buzzatii exposed to a hallucinogenic columnar cactus, also consumed by humans, to identify ortholog genes exhibiting adaptive footprints of alkaloid tolerance. Genomic analyses in human populations revealed a suite of ortholog genes evolving under recent positive selection in indigenous populations of the Central Andes. Our results provide evidence of selection in genetic variants related to alkaloids toxicity, xenobiotic metabolism, and neuronal plasticity in Aymara and Quechua populations, suggesting a possible process of gene-culture coevolution driven by religious practices.Fil: Padro, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: de Panis, Diego Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Luisi, Pierre. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Filosofía y Humanidades; Argentina. Instituto Pasteur; FranciaFil: Dopazo, Hernán Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Szajnman, Sergio Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; ArgentinaFil: Hasson, Esteban Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Soto, Ignacio Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    Mutant PRPF8 Causes Widespread Splicing Changes in Spliceosome Components in Retinitis Pigmentosa Patient iPSC-Derived RPE Cells

    Get PDF
    Retinitis pigmentosa (RP) is a rare, progressive disease that affects photoreceptors and retinal pigment epithelial (RPE) cells with blindness as a final outcome. Despite high medical and social impact, there is currently no therapeutic options to slow down the progression of or cure the disease. The development of effective therapies was largely hindered by high genetic heterogeneity, inaccessible disease tissue, and unfaithful model organisms. The fact that components of ubiquitously expressed splicing factors lead to the retina-specific disease is an additional intriguing question. Herein, we sought to correlate the retinal cell-type-specific disease phenotype with the splicing profile shown by a patient with autosomal recessive RP, caused by a mutation in pre-mRNA splicing factor 8 (PRPF8). In order to get insight into the role of PRPF8 in homeostasis and disease, we capitalize on the ability to generate patient-specific RPE cells and reveal differentially expressed genes unique to RPE cells. We found that spliceosomal complex and ribosomal functions are crucial in determining cell-type specificity through differential expression and alternative splicing (AS) and that PRPF8 mutation causes global changes in splice site selection and exon inclusion that particularly affect genes involved in these cellular functions. This finding corroborates the hypothesis that retinal tissue identity is conferred by a specific splicing program and identifies retinal AS events as a framework toward the design of novel therapeutic opportunities.This work was supported by Institute of Health Carlos III/ERDF (European Regional Development Fund), Spain [PI16/00409 (DL), PI20/01119 (DL), CP18/00033 (DL), PI15/00227 (MC), CPII16/00037 (SE), and PI18-00286 (SE)], Platform for Proteomics, Genotyping and Cell Lines; PRB3 of ISCIII (PT17/0019/0024); National Science Foundation GACR 18-04393S and the project “Centre of Reconstructive Neuroscience”, registration number CZ.02. 1.01/0.0./0.0/15_003/0000419PI15/00227; Spanish Ministry of Economy and Competitiveness grant BES-2016-076994 (ÁA-L); and Academy of Finland (HS)

    SUS1 introns are required for efficient mRNA nuclear export in yeast

    Get PDF
    Efficient coupling between mRNA synthesis and export is essential for gene expression. Sus1/ENY2, a component of the SAGA and TREX-2 complexes, is involved in both transcription and mRNA export. While most yeast genes lack introns, we previously reported that yeast SUS1 bears two. Here we show that this feature is evolutionarily conserved and critical for Sus1 function. We determine that while SUS1 splicing is inefficient, it responds to cellular conditions, and intronic mutations either promoting or blocking splicing lead to defects in mRNA export and cell growth. Consistent with this, we find that an intron-less SUS1 only partially rescues sus1Δ phenotypes. Remarkably, splicing of each SUS1 intron is also affected by the presence of the other and by SUS1 exonic sequences. Moreover, by following SUS1 RNA and protein levels we establish that nonsense-mediated decay (NMD) pathway and the splicing factor Mud2 both play a role in SUS1 expression. Our data (and those of the accompanying work by Hossain et al.) provide evidence of the involvement of splicing, translation, and decay in the regulation of early events in mRNP biogenesis; and imply the additional requirement for a balance in splicing isoforms from a single gene

    Additional file 2: Figure S1. of Selective constraints on protamine 2 in primates and rodents

    No full text
    Phylogenetic tree constructed as consensus of phylogenetic data available in the literature. (PDF 650 kb

    Mechanism of genetic exchange in American trypanosomes.

    No full text
    The kinetoplastid Protozoa are responsible for devastating diseases. In the Americas, Trypanosoma cruzi is the agent of Chagas' disease--a widespread disease transmissible from animals to humans (zoonosis)--which is transmitted by exposure to infected faeces of blood-sucking triatomine bugs. The presence of genetic exchange in T. cruzi and in Leishmania is much debated. Here, by producing hybrid clones, we show that T. cruzi has an extant capacity for genetic exchange. The mechanism is unusual and distinct from that proposed for the African trypanosome, Trypanosoma brucei. Two biological clones of T. cruzi were transfected to carry different drug-resistance markers, and were passaged together through the entire life cycle. Six double-drug-resistant progeny clones, recovered from the mammalian stage of the life cycle, show fusion of parental genotypes, loss of alleles, homologous recombination, and uniparental inheritance of kinetoplast maxicircle DNA. There are strong genetic parallels between these experimental hybrids and the genotypes among natural isolates of T. cruzi. In this instance, aneuploidy through nuclear hybridization results in recombination across far greater genetic distances than mendelian genetic exchange. This mechanism also parallels genome duplication

    Analysis of five gene sets in chimpanzees suggests decoupling between the action of selection on protein-coding and on noncoding elements

    Get PDF
    We set out to investigate potential differences and similarities between the selective forces acting upon the coding and noncoding regions of five different sets of genes defined according to functional and evolutionary criteria: 1) two reference gene sets presenting accelerated and slow rates of protein evolution (the Complement and Actin pathways); 2) a set of genes with evidence of accelerated evolution in at least one of their introns; and 3) two gene sets related to neurological function (Parkinson's and Alzheimer's diseases). To that effect, we combine human-chimpanzee divergence patterns with polymorphism data obtained from target resequencing 20 central chimpanzees, our closest relatives with largest long-term effective population size. By using the distribution of fitness effect-alpha extension of the McDonald-Kreitman test, we reproduce inferences of rates of evolution previously based only on divergence data on both coding and intronic sequences and also obtain inferences for other classes of genomic elements (untranslated regions, promoters, and conserved noncoding sequences). Our results suggest that 1) the distribution of fitness effect-alpha method successfully helps distinguishing different scenarios of accelerated divergence (adaptation or relaxed selective constraints) and 2) the adaptive history of coding and noncoding sequences within the gene sets analyzed is decoupled
    corecore