56 research outputs found

    Cytoreductive surgery followed by chemotherapy versus chemotherapy alone for recurrent platinum- sensitive epithelial ovarian cancer (SOCceR trial):a multicenter randomised controlled study

    Get PDF
    BACKGROUND: Improvement in treatment for patients with recurrent ovarian cancer is needed. Standard therapy in patients with platinum-sensitive recurrent ovarian cancer consists of platinum-based chemotherapy. Median overall survival is reported between 18 and 35 months. Currently, the role of surgery in recurrent ovarian cancer is not clear. In selective patients a survival benefit up to 62 months is reported for patients undergoing complete secondary cytoreductive surgery. Whether cytoreductive surgery in recurrent platinum-sensitive ovarian cancer is beneficial remains questionable due to the lack of level I-II evidence. METHODS/DESIGN: Multicentre randomized controlled trial, including all nine gynecologic oncologic centres in the Netherlands and their affiliated hospitals. Eligible patients are women, with first recurrence of FIGO stage Ic-IV platinum-sensitive epithelial ovarian cancer, primary peritoneal cancer or fallopian tube cancer, who meet the inclusion criteria. Participants are randomized between the standard treatment consisting of at least six cycles of intravenous platinum based chemotherapy and the experimental treatment which consists of secondary cytoreductive surgery followed by at least six cycles of intravenous platinum based chemotherapy. Primary outcome measure is progression free survival. In total 230 patients will be randomized. Data will be analysed according to intention to treat. DISCUSSION: Where the role of cytoreductive surgery is widely accepted in the initial treatment of ovarian cancer, its value in recurrent platinum-sensitive epithelial ovarian cancer has not been established so far. A better understanding of the benefits and patients selection criteria for secondary cytoreductive surgery has to be obtained. Therefore the 4(th) ovarian cancer consensus conference in 2010 stated that randomized controlled phase 3 trials evaluating the role of surgery in platinum-sensitive recurrent epithelial ovarian cancer are urgently needed. We present a recently started multicentre randomized controlled trial that will investigate the role of secondary cytoreductive surgery followed by chemotherapy will improve progression free survival in selected patients with first recurrence of platinum-sensitive epithelial ovarian cancer. TRIAL REGISTRATION: Netherlands Trial Register number: NTR3337

    Physiological Correlates of Volunteering

    Get PDF
    We review research on physiological correlates of volunteering, a neglected but promising research field. Some of these correlates seem to be causal factors influencing volunteering. Volunteers tend to have better physical health, both self-reported and expert-assessed, better mental health, and perform better on cognitive tasks. Research thus far has rarely examined neurological, neurochemical, hormonal, and genetic correlates of volunteering to any significant extent, especially controlling for other factors as potential confounds. Evolutionary theory and behavioral genetic research suggest the importance of such physiological factors in humans. Basically, many aspects of social relationships and social activities have effects on health (e.g., Newman and Roberts 2013; Uchino 2004), as the widely used biopsychosocial (BPS) model suggests (Institute of Medicine 2001). Studies of formal volunteering (FV), charitable giving, and altruistic behavior suggest that physiological characteristics are related to volunteering, including specific genes (such as oxytocin receptor [OXTR] genes, Arginine vasopressin receptor [AVPR] genes, dopamine D4 receptor [DRD4] genes, and 5-HTTLPR). We recommend that future research on physiological factors be extended to non-Western populations, focusing specifically on volunteering, and differentiating between different forms and types of volunteering and civic participation

    Frequently asked questions about chlorophyll fluorescence, the sequel

    Get PDF
    [EN] Using chlorophyll (Chl) a fluorescence many aspects of the photosynthetic apparatus can be studied, both in vitro and, noninvasively, in vivo. Complementary techniques can help to interpret changes in the Chl a fluorescence kinetics. Kalaji et al. (Photosynth Res 122: 121-158, 2014a) addressed several questions about instruments, methods and applications based on Chl a fluorescence. Here, additionalChl a fluorescence-related topics are discussed again in a question and answer format. Examples are the effect of connectivity on photochemical quenching, the correction of F-V/F-M values for PSI fluorescence, the energy partitioning concept, the interpretation of the complementary area, probing the donor side of PSII, the assignment of bands of 77 K fluorescence emission spectra to fluorescence emitters, the relationship between prompt and delayed fluorescence, potential problems when sampling tree canopies, the use of fluorescence parameters in QTL studies, the use of Chl a fluorescence in biosensor applications and the application of neural network approaches for the analysis of fluorescence measurements. The answers draw on knowledge fromdifferent Chl a fluorescence analysis domains, yielding in several cases new insights.Kalaji, H.; Schansker, G.; Brestic, M.; Bussotti, F.; Calatayud, A.; Ferroni, L.; Goltsev, V.... (2017). Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynthesis Research. 132(1):13-66. https://doi.org/10.1007/s11120-016-0318-yS13661321Adams WW III, Demmig-Adams B (1992) Operation of the xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight. Plant 186:390–398Adams WW III, Demmig-Adams B (2004) Chlorophyll fluorescence as a tool to monitor plant response to the environment. In: Papageorgiou GC, Govindjee (eds) Advances in photosynthesis and respiration series chlorophyll fluorescence: a signature of photosynthesis, vol 19. Springer, Dordrecht, pp 583–604Adams WW III, Demmig-Adams B, Winter K, Schreiber U (1990a) The ratio of variable to maximum chlorophyll fluorescence from photosystem II, measured in leaves at ambient temperature and at 77 K, as an indicator of the photon yield of photosynthesis. Planta 180:166–174Adams WW III, Winter K, Schreiber U, Schramel P (1990b) Photosynthesis and chlorophyll fluorescence characteristics in relationship to changes in pigment and element composition of leaves of Platanus occidentalis L. during autumnal senescence. Plant Physiol 93:1184–1190Alfonso M, Montoya G, Cases R, Rodriguez R, Picorel R (1994) Core antenna complexes, CP43 and CP47, of higher plant photosystem II. Spectral properties, pigment stoichiometry, and amino acid composition. Biochemistry 33:10494–10500Allakhverdiev SI (2011) Recent progress in the studies of structure and function of photosystem II. J Photochem Photobiol B Biol 104:1–8Allakhverdiev SI, Klimov VV, Carpentier R (1994) Variable thermal emission and chlorophyll fluorescence in photosystem II particles. Proc Natl Acad Sci USA 491:281–285Allakhverdiev SI, Los DA, Mohanty P, Nishiyama Y, Murata N (2007) Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochim Biophys Acta 1767:1363–1371Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098:275–335Allen JF, Bennett J, Steinback KE, Arntzen CJ (1981) Chloroplast protein phosphorylation couples platoquinone redox state to distribution of excitation energy between photosystems. Nature 291:21–25Amesz J, van Gorkom HJ (1978) Delayed fluorescence in photosynthesis. Annu Rev Plant Physiol 29:47–66Ananyev GM, Dismukes GC (1996) Assembly of the tetra-Mn site of photosynthetic water oxidation by photoactivation: Mn stoichiometry and detection of a new intermediate. Biochemistry 35:4102–4109Anderson JM, Chow WS, Goodchild DJ (1988) Thylakoid membrane organization in sun/shade acclimation. Aust J Plant Physiol 15:11–26Andrizhiyevskaya EG, Chojnicka A, Bautista JA, Diner BA, van Grondelle R, Dekker JP (2005) Origin of the F685 and F695 fluorescence in photosystem II. Photosynth Res 84:173–180Anithakumari AM, Nataraja KN, Visser RGF, van der Linden G (2012) Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Mol Breed 30:1413–1429Antal TK, Krendeleva TE, Rubin AB (2007) Study of photosystem 2 heterogeneity in the sulfur-deficient green alga Chlamydomonas reinhardtii. Photosynth Res 94:13–22Antal TK, Matorin DN, Ilyash LV, Volgusheva AA, Osipov A, Konyuhow IV, Krendeleva TE, Rubin AB (2009) Probing of photosynthetic reactions in four phytoplanktonic algae with a PEA fluorometer. Photosynth Res 102:67–76Araus JL, Amaro T, Voltas J, Nakkoul H, Nachit MM (1998) Chlorophyll fluorescence as a selection criterion for grain yield in durum wheat under Mediterranean conditions. Field Crops Res 55:209–223Argyroudi-Akoyunoglou J (1984) The 77 K fluorescence spectrum of the Photosystem I pigment-protein complex CPIa. FEBS Lett 171:47–53Arnold WA (1991) Experiments. Photosynth Res 27:73–82Arnold WA, Thompson J (1956) Delayed light production by blue-green algae, red algae and purple bacteria. J Gen Physiol 39:311–318Aro EM, Hundal T, Carlberg I, Andersson B (1990) In vitro studies on light-induced inhibition of PSII and D1-protein degradation at low temperatures. Biochim Biophys Acta 1019:269–275Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation protein damage and turnover. Biochim Biophys Acta 1143:113–134Arsalane W, Parésys G, Duval JC, Wilhelm C, Conrad R, Büchel C (1993) A new fluorometric device to measure the in vivo chlorophyll a fluorescence yield in microalgae and its use as a herbicide monitor. Eur J Phycol 28:247–252Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16Bailey S, Walters RG, Jansson S, Horton P (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213:794–801Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:659–668Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621Ballottari M, Dall’Osto L, Morosinotto T, Bassi R (2007) Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J Biol Chem 282:8947–8958Barbagallo RP, Oxborough K, Pallett KE, Baker NR (2003) Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiol 132:485–493Barber J, Malkin S, Telfer A (1989) The origin of chlorophyll fluorescence in vivo and its quenching by the photosystem II reaction centre. Philos Trans R Soc Lond B 323:227–239Barra M, Haumann M, Loja P, Krivanek R, Grundmeier A, Dau H (2006) Intermediates in assembly by photoactivation after thermally accelerated disassembly of the manganese complex of photosynthetic water oxidation. Biochemistry 45:14523–14532Baumann HA, Morrison L, Stengel DB (2009) Metal accumulation and toxicity measured by PAM-chlorophyll fluorescence in seven species of marine macroalgae. Ecotoxicol Environ Safe 72:1063–1075Bauwe H, Hagemann M, Fernie A (2010) Photorespiration: players, partners and origin. Trends Plant Sci 15:330–336Beck WF, Brudvig GW (1987) Reactions of hydroxylamine with the electron-donor side of photosystem II. Biochemistry 26:8285–8295Belgio E, Kapitonova E, Chmeliov J, Duffy CDP, Ungerer P, Valkunas L, Ruban AV (2014) Economic photoprotection in photosystem II that retains a complete light-harvesting system with slow energy traps. Nat Commun 5:4433. doi: 10.1038/ncomms5433Bell DH, Hipkins MF (1985) Analysis of fluorescence induction curves from pea chloroplasts: photosystem II reaction centre heterogeneity. Biochim Biophys Acta 807:255–262Bellafiore S, Barneche F, Peltier G, Rochaix J-D (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433:892–895Belyaeva NE, Schmitt F-J, Paschenko VZ, Riznichenko GY, Rubin AB (2015) Modeling of the redox state dynamics in photosystem II of Chlorella pyrenoidosa Chick cells and leaves of spinach and Arabidopsis thaliana from single flash-induced fluorescence quantum yield changes on the 100 ns–10 s time scale. Photosynth Res 125:123–140Bennett J (1977) Phosphorylation of chloroplast membrane polypeptides. Nature 269:344–346Bennett J (1983) Regulation of photosynthesis by reversible phosphorylation of the light-harvesting chlorophyll a/b protein. Biochem J 212:1–13Bennett J, Shaw EK, Michel H (1988) Cytochrome b6f complex is required for phosphorylation of light-harvesting chlorophyll a/b complex II in chloroplast photosynthetic membranes. Eur J Biochem 171:95–100Bennoun P (2002) The present model for chlororespiration. Photosynth Res 73:273–277Bennoun P, Li Y-S (1973) New results on the mode of action of 3,-(3,4-dichlorophenyl)-1,1-dimethylurea in spinach chloroplasts. Biochim Biophys Acta 292:162–168Berden-Zrimec M, Drinovec L, Zrimec A (2011) Delayed fluorescence. In: Suggett DJ, Borowitzka M, Prášil O (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications, developments in applied phycology, vol 4. Springer, The Netherlands, pp 293–309Berger S, Sinha AK, Roitsch T (2007) Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions. J Exp Bot 58:4019–4026Bernacchi CJ, Leakey ADB, Heady LE, Morgan PB, Dohleman FG, McGrath JM, Gillespie GM, Wittig VE, Rogers A, Long SP, Ort DR (2006) Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open-air field conditions. Plant Cell Environ 29:2077–2090Betterle N, Ballotari M, Zorzan S, de Bianchi S, Cazzaniga S, Dall’Osto L, Morosinotto T, Bassi R (2009) Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J Biol Chem 284:15255–15266Bielczynski LW, Schansker G, Croce R (2016) Effect of light acclimation on the organization of photosystem II super and sub-complexes in Arabidopsis thaliana. Front Plant Sci. doi: 10.3389/fpls.2016.00105Björkman O, Demmig-Adams B (1995) Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 17–47Blubaugh DJ, Cheniae GM (1990) Kinetics of photoinhibition in hydroxylamine-extracted photosystem II membranes: relevance to photoactivation and site of electron donation. Biochemistry 29:5109–5118Bock A, Krieger-Liszkay A, Ortiz de Zarate IB, Schönknecht G (2001) Cl—channel inhibitors of the arylaminobenzoate type act as photosystem II herbicides: a functional and structural study. Biochemistry 40:3273–3281Bode S, Quentmeier CC, Liao P-N, Hafi N, Barros T, Wilk L, Bittner F, Walla PJ (2009) On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc Natl Acad Sci USA 106:12311–12316Boekema EJ, Van Roon H, Van Breemen JFL, Dekker JP (1999) Supramolecular organization of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Eur J Biochem 266:444–452Bolhar-Nordenkampf HR, Long SP, Baker NR, Öquist G, Schreiber U, Lechner EG (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current Instrumentation. Funct Ecol 3:497–514Bonaventura C, Myers J (1969) Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta 189:366–383Bonfig KB, Schreiber U, Gabler A, Roitsch T, Berger S (2006) Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta 225:1–12Bouges-Bocquet B (1980) Kinetic models for the electron donors of photosystem II of photosynthesis. Biochim Biophys Acta 594:85–103Bradbury M, Baker NR (1981) Analysis of the slow phases of the in vivo chlorophyll fluorescence induction curve; changes in the redox state of photosystem II electron acceptors and fluorescence emission from photosystem I and II. Biochim Biophys Acta 635:542–551Brestič M, Živčák M (2013) PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications. In: Das AB, Rout GR (eds) Molecular stress physiology of plants. Springer, New Dehli, pp 87–131Brestič M, Cornic G, Fryer MJ, Baker NR (1995) Does photorespiration protect the photosynthetic apparatus in French bean leaves from photoinhibition during drought stress? Planta 196:450–457Brestič M, Živčák M, Kalaji HM, Allakhverdiev SI, Carpentier R (2012) Photosystem II thermo-stability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiol Biochem 57:93–105Brody SS, Rabinowitch E (1957) Excitation lifetime of photosynthetic pigments in vitro and in vivo. Science 125:555–563Brudvig GW, Casey JL, Sauer K (1983) The effect of temperature on the formation and decay of the multiline EPR signal species associated with photosynthetic oxygen evolution. Biochim Biophys Acta 723:366–371Bukhov NG, Boucher N, Carpentier R (1997) The correlation between the induction kinetics of the photoacoustic signal and chlorophyll fluorescence in barley leaves is governed by changes in the redox state of the photosystem II acceptor side; a study under atmospheric and high CO2 concentrations. Can J Bot 75:1399–1406Bukhov N, Egorova E, Krendeleva T, Rubin A, Wiese C, Heber U (2001) Relaxation of variable chlorophyll fluorescence after illumination of dark-adapted barley leaves as influenced by the redox states of electron carriers. Photosynth Res 70:155–166Buschmann C, Koscányi L (1989) Light-induced heat production correlated with chlorophyll fluorescence and its quenching. Photosynth Res 21:129–136Bussotti F (2004) Assessment of stress conditions in Quercus ilex L. leaves by O-J-I-P chlorophyll a fluorescence analysis. Plant Biosystems 13:101–109Bussotti F, Agati G, Desotgiu R, Matteini P, Tani C (2005) Ozone foliar symptoms in woody plants assessed with ultrastructural and fluorescence analysis. New Phytol 166:941–955Bussotti F, Desotgiu R, Cascio C, Pollastrini M, Gravano E, Gerosa G, Marzuoli R, Nali C, Lorenzini G, Salvatori E, Manes F, Schaub M, Strasser RJ (2011a) Ozone stress in woody plants assessed with chlorophyll a fluorescence. A critical reassessment of existing data. Environ Exp Bot 73:19–30Bussotti F, Pollastrini M, Cascio C, Desotgiu R, Gerosa G, Marzuoli R, Nali C, Lorenzini G, Pellegrini E, Carucci MG, Salvatori E, Fusaro L, Piccotto M, Malaspina P, Manfredi A, Roccotello E, Toscano S, Gottardini E, Cristofori A, Fini A, Weber D, Baldassarre V, Barbanti L, Monti A, Strasser RJ (2011b) Conclusive remarks. Reliability and comparability of chlorophyll fluorescence data from several field teams. Environ Exp Bot 73:116–119Butler WL (1978) Energy distribution in the photochemical apparatus of photosynthesis. Annu Rev Plant Physiol 29:345–378Byrdin M, Rimke I, Schlodder E, Stehlik D, Roelofs TA (2000) Decay kinetics and quantum yields of fluorescence in photosystem I from Synechococcus elongatus with P700 in the reduced and oxidized state: Are the kinetics of excited state decay trap-limited or transfer-limited? Biophys J 79:992–1007Caffarri S, Croce R, Cattivelli L, Bassi R (2004) A look within LHCII: differential analysis of the Lhcb1-3 complexes building the major trimeric antenna complex of higher-plant photosynthesis. Biochemistry 43:9467–9476Calatayud A, Ramirez JW, Iglesias DJ, Barreno E (2002) Effects of ozone on photosynthetic CO2 exchange, chlorophyll a fluorescence and antioxidant systems in lettuce leaves. Physiol Plant 116:308–316Cascio C, Schaub M, Novak K, Desotgiu R, Bussotti F, Strasser RJ (2010) Foliar responses to ozone of Fagus sylvatica L. seedlings grown in shaded and in full sunlight conditions. Environ Exp Bot 68:188–197Cazzaniga S, Dall’Osto L, Kong S-G, Wada M, Bassi R (2013) Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in Arabidopsis. Plant J 76:568–579Ceppi MG, Oukarroum A, Çiçek N, Strasser RJ, Schansker G (2012) The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. Physiol Plant 144:277–288Chaudhary N, Singh S, Agrawal SB, Agrawal M (2013) Assessment of six Indian cultivars of mung bean against ozone by using foliar injury index and changes in carbon assimilation, gas exchange, chlorophyll fluorescence and photosynthetic pigments. Environ Monit Assess 185:7793–7807Chen J, Kell A, Acharya K, Kupitz C, Fromme P, Jankowiak R (2015) Critical assessment of the emission spectra of various photosystem II core complexes. Photosynth Res 124:253–265Cheng L, Fuchigami LH, Breen PJ (2000) Light absorption and partitioning in relation to nitrogen content ‘Fuji’ apple leaves. J Am Soc Hortic Sci 125:581–587Choi CJ, Berges JA, Young EB (2012) Rapid effects of diverse toxic water pollutants on chlorophyll a fluorescence: variable responses among freshwater microalgae. Water Res 46:2615–2626Chow WS, Aro EM (2005) Photoinactivation and mechanisms of recovery. In: Wydrzynski T, Satoh K (eds) Photosystem II: the light-driven water: plastoquinone oxidoreductase, advances in photosynthesis and respiration, vol 22. Springer, Dordrecht, pp 627–648Chow WS, Fan DY, Oguchi R, Jia H, Losciale P, Youn-Il P, He J, Öquist G, Shen YG, Anderson JM (2012) Quantifying and monitoring functional photosystem II and the stoichiometry of the two photosystems in leaf segments: approaches and approximations. Photosynth Res 113:63–74Christensen MG, Teicher HB, Streibig JC (2003) Linking fluorescence induction curve and biomass in herbicide screening. Pest Manag Sci 59:1303–1310Codrea CM, Aittokallio T, Keränen M, Tyystjärvi E, Nevalainen OS (2003) Feature learning with a genetic algorithm for fluorescence fingerprinting of plant species. Pattern Recognit Lett 24:2663–2673Conjeaud H, Mathis P (1980) The effect of pH on the reduction kinetics of P-680 in tris-treated chloroplasts. Biochim Biophys Acta 590:353–359Conrad R, Büchel C, Wilhelm C, Arsalane W, Berkaloff C, Duval JC (1993) Changes in yield of in-vivo fluorescence of chlorophyll a as a tool for selective herbicide monitoring. J Appl Phycol 5:505–516Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. In: Baker NR (ed) Photosynthesis and the environment. Kluwer Academic Publisher, Dordrecht, pp 347–366Cornic G, Fresneau C (2002) Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystems II during a mild drought. Ann Bot 89:887–894Correia MJ, Chaves MMC, Pereira JS (1990) Afternoon depression in photosynthesis in grapevine leaves—evidence for a high light stress effect. J Exp Bot 41:417–426Cotrozzi L, Remorini D, Pellegrini E, Landi M, Massai R, Nali C, Guidi L, Lorenzini G (2016) Variations in physiological and biochemical traits of oak seedlings grown under drought and ozone stress. Physiol Plant 157:69–84Croce R, Zucchelli G, Garlaschi FM, Bassi R, Jennings RC (1997) Excited state equilibration in the photosystem I-light-harvesting I complex: P700 is almost isoenergetic with its antenna. Biochemistry 35:8572–8579Cser K, Vass I (2007) Radiative and non-radiative charge recombination pathways in photosystem II studied by thermoluminescence and chlorophyll fluorescence in the cyanobacterium Synechocystis 6308. Biochim Biophys Acta 1767:233–243Czyczyło-Mysza I, Tyrka M, Marcińska Skrzypek E, Karbarz M, Dziurka M, Hura T, Dziurka K, Quarrie SA (2013) Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. Mol Breed 32:189–210D’Haene SE, Sobotka R, Bučinská L, Dekker JP, Komenda J (2015) Interaction of the PsbH subunit with a chlorophyll bound to histidine 114 of CP47 is responsible for the red 77 K fluorescence of Photosystem II. Biochim Biophys Acta 1847:1327–1334Dang NC, Zazubovich V, Reppert M, Neupane B, Picorel R, Seibert M, Jankowiak R (2008) The CP43 proximal antenna complex of higher plant photosystem II revisited: modeling and hole burning study. J Phys Chem B 112:9921–9933Dau H (1994) Molecular mechanisms and quantitative models of variable Photosystem II fluorescence. Photochem Photobiol 60:1–23Dau H, Sauer K (1992) Electric field effect on the picosecond fluorescence of photosystem II and its relation to the energetics and kinetics of primary charge separation. Biochim Biophys Acta 1102:91–106Dau H, Zaharieva I, Haumann M (2012) Recent developments in research on water oxidation by photosystem II. Curr Opin Chem Biol 16:3–10de Wijn R, van Gorkom HJ (2001) Kinetics of electron transfer from QA to QB in photosystem II. Biochemistry 40:11912–11922de Wijn R, van Gorkom HJ (2002) The rate of charge recombination in photosystem II. Biochim Biophys Acta 1553:302–308Debus RJ (1992) The manganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys Acta 1102:269–352Degl’Innocenti E, Guidi L, Soldatini GF (2002) Characteriz

    High incidence of erysipelas after surgical treatment for vulvar carcinoma: An observational study

    No full text
    Objectives: Vulvar carcinoma is mainly treated surgically and has an overall good prognosis. Despite the development of minimally invasive surgical procedures in recent years, morbidity remains significant. The aim of the study was to determine the incidence and risk factors of erysipelas after surgical treatment for vulvar carcinoma. Methods: This retrospective observational study was performed within the Comprehensive Cancer Centre South. The study included patients (N = 116) who underwent surgery for primary vulvar carcinoma between 2005 and 2012. Patients with International Federation of Gynecology and Obstetrics stage IA and IV were excluded. Clinical and histopathological data were analyzed using logistic regression, χ2 tests, Fisher exact tests, independent t tests, and nonparametric tests. Primary outcome was the incidence of postoperative erysipelas and determination of risk factors for erysipelas. Secondary outcome included other comorbidities. Results: A total of 23 patients (20%) with vulvar carcinoma had 1 or more episodes of erysipelas. The risk of developing erysipelas was significantly higher in patients who underwent lymph node dissection than in those who underwent sentinel node biopsy (36% [n = 12] and 14% [n = 11], respectively, P = 0.008) and in patients with lymphedema than in those without (30% [n = 7] and 12% [n = 11], respectively, P = 0.048). Patients with diabetes tended to have a higher incidence of erysipelas than those without (28% vs 18%, P = 0.27). Conclusions: Erysipelas occurs frequently in patients who undergo surgical treatment for vulvar carcinoma. The risk of erysipelas is 3 times higher in patients who undergo lymph node dissection and in those with lymphedema than in those without, and it tends to be high in patients with diabetes

    Comparing Blind and Ultrasound-Guided Retrobulbar Nerve Blocks in Equine Cadavers: The Training Effect

    No full text
    In standing ophthalmic surgery in horses, a retrobulbar nerve block (RNB) is often placed blindly for anesthesia and akinesia. The ultrasound (US)-guided RNB may have fewer complications, but the two techniques have only been compared once in equine cadavers. This study compares the techniques for success and complication rates and analyzes the effect of training on US guidance. Twenty-two equine cadavers were divided into three groups: blind RNBs were performed bilaterally in eight cadavers, US-guided RNBs were performed bilaterally in seven cadavers, and after US-guided training, blind RNBs were performed bilaterally in seven cadavers. All RNBs were performed by the same two inexperienced operators, and a combination of contrast medium (CM; 1.25 mL) and methylene blue dye (1.25 mL) were injected (2.5 mL total volume). Needle positioning in the periorbita and the distance of the CM to the optic foramen were assessed using computerized tomography (CT). Dye spreading was evaluated by dissection. In group 1, 37.5% of the injections were in the optimal central position in the periorbita; in group 2, 75% and in group 3, 71.4%. There was no significant difference between the groups regarding needle position (groups 1 and 2 p = 0.056; groups 1 and 3 p = 0.069, groups 2 and 3 p = 0.8). The mean CM distribution distance was not significantly different between all groups. Group 1 had 18.75% intraocular injections versus 0% in group 2 and 7.1% in group 3 (not significant). US guidance showed no significant increases in accuracy nor decreases in complications. However, the effects on accuracy showed a trend towards significant improvement, and larger scale follow-up studies might show significant training effects on US guidance

    Comparing Blind and Ultrasound-Guided Retrobulbar Nerve Blocks in Equine Cadavers: The Training Effect

    Get PDF
    In standing ophthalmic surgery in horses, a retrobulbar nerve block (RNB) is often placed blindly for anesthesia and akinesia. The ultrasound (US)-guided RNB may have fewer complications, but the two techniques have only been compared once in equine cadavers. This study compares the techniques for success and complication rates and analyzes the effect of training on US guidance. Twenty-two equine cadavers were divided into three groups: blind RNBs were performed bilaterally in eight cadavers, US-guided RNBs were performed bilaterally in seven cadavers, and after US-guided training, blind RNBs were performed bilaterally in seven cadavers. All RNBs were performed by the same two inexperienced operators, and a combination of contrast medium (CM; 1.25 mL) and methylene blue dye (1.25 mL) were injected (2.5 mL total volume). Needle positioning in the periorbita and the distance of the CM to the optic foramen were assessed using computerized tomography (CT). Dye spreading was evaluated by dissection. In group 1, 37.5% of the injections were in the optimal central position in the periorbita; in group 2, 75% and in group 3, 71.4%. There was no significant difference between the groups regarding needle position (groups 1 and 2 p = 0.056; groups 1 and 3 p = 0.069, groups 2 and 3 p = 0.8). The mean CM distribution distance was not significantly different between all groups. Group 1 had 18.75% intraocular injections versus 0% in group 2 and 7.1% in group 3 (not significant). US guidance showed no significant increases in accuracy nor decreases in complications. However, the effects on accuracy showed a trend towards significant improvement, and larger scale follow-up studies might show significant training effects on US guidance

    Comparing Blind and Ultrasound-Guided Retrobulbar Nerve Blocks in Equine Cadavers: The Training Effect

    Get PDF
    In standing ophthalmic surgery in horses, a retrobulbar nerve block (RNB) is often placed blindly for anesthesia and akinesia. The ultrasound (US)-guided RNB may have fewer complications, but the two techniques have only been compared once in equine cadavers. This study compares the techniques for success and complication rates and analyzes the effect of training on US guidance. Twenty-two equine cadavers were divided into three groups: blind RNBs were performed bilaterally in eight cadavers, US-guided RNBs were performed bilaterally in seven cadavers, and after US-guided training, blind RNBs were performed bilaterally in seven cadavers. All RNBs were performed by the same two inexperienced operators, and a combination of contrast medium (CM; 1.25 mL) and methylene blue dye (1.25 mL) were injected (2.5 mL total volume). Needle positioning in the periorbita and the distance of the CM to the optic foramen were assessed using computerized tomography (CT). Dye spreading was evaluated by dissection. In group 1, 37.5% of the injections were in the optimal central position in the periorbita; in group 2, 75% and in group 3, 71.4%. There was no significant difference between the groups regarding needle position (groups 1 and 2 p = 0.056; groups 1 and 3 p = 0.069, groups 2 and 3 p = 0.8). The mean CM distribution distance was not significantly different between all groups. Group 1 had 18.75% intraocular injections versus 0% in group 2 and 7.1% in group 3 (not significant). US guidance showed no significant increases in accuracy nor decreases in complications. However, the effects on accuracy showed a trend towards significant improvement, and larger scale follow-up studies might show significant training effects on US guidance

    Effect of HIPEC according to HRD/BRCAwt genomic profile in stage III ovarian cancer:Results from the phase III OVHIPEC trial

    Get PDF
    The addition of hyperthermic intraperitoneal chemotherapy (HIPEC) with cisplatin to interval cytoreductive surgery improves recurrence-free (RFS) and overall survival (OS) in patients with stage III ovarian cancer. Homologous recombination deficient (HRD) ovarian tumors are usually more platinum sensitive. Since hyperthermia impairs BRCA1/2 protein function, we hypothesized that HRD tumors respond best to treatment with HIPEC. We analyzed the effect of HIPEC in patients in the OVHIPEC trial, stratified by HRD status and BRCAm status. Clinical data and tissue samples were collected from patients included in the randomized, phase III OVHIPEC-1 trial. DNA copy number variation (CNV) profiles, HRD-related pathogenic mutations and BRCA1 promotor hypermethylation were determined. CNV-profiles were categorized as HRD or non-HRD, based on a previously validated algorithm-based BRCA1-like classifier. Hazard ratios (HR) and corresponding 99% confidence intervals (CI) for the effect of RFS and OS of HIPEC in the BRCAm, the HRD/BRCAwt and the non-HRD group were estimated using Cox proportional hazard models. Tumor DNA was available from 200/245 (82%) patients. Seventeen (9%) tumors carried a pathogenic mutation in BRCA1 and 14 (7%) in BRCA2. Ninety-one (46%) tumors classified as BRCA1-like. The effect of HIPEC on RFS and OS was absent in BRCAm tumors (HR 1.25; 99%CI 0.48-3.29), and most present in HRD/BRCAwt (HR 0.44; 99%CI 0.21-0.91), and non-HRD/BRCAwt tumors (HR 0.82; 99%CI 0.48-1.42), interaction P value: 0.024. Patients with HRD tumors without pathogenic BRCA1/2 mutation appear to benefit most from treatment with HIPEC, while benefit in patients with BRCA1/2 pathogenic mutations and patients without HRD seems less evident.</p

    Central radiology assessment of the randomized phase III open-label OVHIPEC-1 trial in ovarian cancer

    Get PDF
    INTRODUCTION: Hyperthermic intraperitoneal chemotherapy (HIPEC) improved investigator-assessed recurrence-free survival and overall survival in patients with stage III ovarian cancer in the phase III OVHIPEC-1 trial. We analyzed whether an open-label design affected the results of the trial by central blinded assessment of recurrence-free survival, and tested whether HIPEC specifically targets the peritoneal surface by analyzing the site of disease recurrence. METHODS: OVHIPEC-1 was an open-label, multicenter, phase III trial that randomized 245 patients after three cycles of neoadjuvant chemotherapy to interval cytoreduction with or without HIPEC using cisplatin (100 mg/m2). Patients received three additional cycles of chemotherapy after surgery. Computed tomography (CT) scans and serum cancer antigen 125 (CA125) measurements were performed during chemotherapy, and during follow-up. Two expert radiologists reviewed all available CT scans. They were blinded for treatment allocation and clinical outcome. Central revision included Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 measurements and peritoneal cancer index scorings at baseline, during treatment, and during follow-up. Time to centrally-revised recurrence was compared between study arms using Cox proportional hazard models. Subdistribution models compared time to peritoneal recurrence between arms, accounting for competing risks. RESULTS: CT scans for central revision were available for 231 patients (94%) during neoadjuvant treatment and 212 patients (87%) during follow-up. Centrally-assessed median recurrence-free survival was 9.9 months in the surgery group and 13.2 months in the surgery+HIPEC group (HR for disease recurrence or death 0.72, 95% CI 0.55 to 0.94; p=0.015). The improved recurrence-free survival and overall survival associated with HIPEC were irrespective of response to neoadjuvant chemotherapy and baseline peritoneal cancer index. Cumulative incidence of peritoneal recurrence was lower after surgery+HIPEC, but there was no difference in extraperitoneal recurrences. CONCLUSION: Centrally-assessed recurrence-free survival analysis confirms the benefit of adding HIPEC to interval cytoreductive surgery in patients with stage III ovarian cancer, with fewer peritoneal recurrences. These results rule out radiological bias caused by the open-label nature of the study
    corecore