1,568 research outputs found

    Enhancement of the Deuteron-Fusion Reactions in Metals and its Experimental Implications

    Full text link
    Recent measurements of the reaction d(d,p)t in metallic environments at very low energies performed by different experimental groups point to an enhanced electron screening effect. However, the resulting screening energies differ strongly for divers host metals and different experiments. Here, we present new experimental results and investigations of interfering processes in the irradiated targets. These measurements inside metals set special challenges and pitfalls which make them and the data analysis particularly error-prone. There are multi-parameter collateral effects which are crucial for the correct interpretation of the observed experimental yields. They mainly originate from target surface contaminations due to residual gases in the vacuum as well as from inhomogeneities and instabilities in the deuteron density distribution in the targets. In order to address these problems an improved differential analysis method beyond the standard procedures has been implemented. Profound scrutiny of the other experiments demonstrates that the observed unusual changes in the reaction yields are mainly due to deuteron density dynamics simulating the alleged screening energy values. The experimental results are compared with different theoretical models of the electron screening in metals. The Debye-H\"{u}ckel model that has been previously proposed to explain the influence of the electron screening on both nuclear reactions and radioactive decays could be clearly excluded.Comment: 22 pages, 12 figures, REVTeX4, 2-column format. Submitted to Phys. Rev. C; accepte

    Evaluation of a new type of direct digital radiography machine

    Get PDF
    Objective. To evaluate a recently developed low-dose, largefield, direct digital X-ray scanning system for medical use.Method. Radiation dose, image quality, diagnostic capability and clinical utility of the unit were compared with those of conventional radiography.Results. Radiation doses ranged from 3% to 5% of conventional radiographic values, and a mean of 1 line-pair per millimetre could be detected. Ease of use, anatomical coverage and tolerance to patient motion were advantages. However, image quality was inferior to that of conventional radiographs, with limited fine detail visibility and penetration. Only 67 of 156 (42.9%) pathological features seen on conventional radiographs were detected, including 13 of 41 fractures (31.7%) and 11 of 18 pneumothoraces (61.1%).Conclusion. Although image quality and diagnostic performance were not ideal, potential roles in triage, foreign body detection and possibly screening were promising. Radiographic factors may have affected sensitivity. This machine demonstrated useful attributes that may, with improvement, be beneficial in the imaging of trauma and other patients

    Semi-Hard Scattering Unraveled from Collective Dynamics by Two-Pion Azimuthal Correlations in 158 A GeV/c Pb + Au Collisions

    Full text link
    Elliptic flow and two-particle azimuthal correlations of charged hadrons and high-pTp_T pions (pT>p_T> 1 GeV/cc) have been measured close to mid-rapidity in 158A GeV/cc Pb+Au collisions by the CERES experiment. Elliptic flow (v2v_2) rises linearly with pTp_T to a value of about 10% at 2 GeV/cc. Beyond pTp_T\approx 1.5 GeV/cc, the slope decreases considerably, possibly indicating a saturation of v2v_2 at high pTp_T. Two-pion azimuthal anisotropies for pT>p_T> 1.2 GeV/cc exceed the elliptic flow values by about 60% in mid-central collisions. These non-flow contributions are attributed to near-side and back-to-back jet-like correlations, the latter exhibiting centrality dependent broadening.Comment: Submitted to Phys. Rev. Letters, 4 pages, 5 figure

    Spin rotation induced by applied pressure in the Cd-doped Ce2RhIn8 intermetallic compound

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORThe pressure evolution of the magnetic properties of the Ce2RhIn7.79Cd0.21 heavy fermion compound was investigated by single crystal neutron magnetic diffraction and electrical resistivity experiments under applied pressure. From the neutron magnetic diffraction data, up to P = 0.6 GPa, we found no changes in the magnetic structure or in the ordering temperature T-N = 4.8 K. However, the increase of pressure induces an interesting spin rotation of the ordered antiferromagnetic moment of Ce2RhIn7.79Cd0.21 into the ab tetragonal plane. From the electrical resistivity measurements under pressure, we have mapped the evolution of T-N and the maximum of the temperature dependent electrical resistivity (T-MAX) as a function of the pressure (P less than or similar to 3.6 GPa). To gain some insight into the microscopic origin of the observed spin rotation as a function of pressure, we have also analyzed some macroscopic magnetic susceptibility data at ambient pressure for pure and Cd-doped Ce2RhIn8 using a mean-field model including tetragonal crystalline electric field (CEF). The analysis indicates that these compounds have a Kramers doublet Gamma(-)(7)-type ground state, followed by a Gamma(+)(7) first excited state at Delta(1) similar to 80 K and a Gamma(6) second excited state at Delta(2) similar to 270 K for Ce2RhIn8 and Delta(2) similar to 250 K for Ce2RhIn7.79Cd0.21. The evolution of the magnetic properties of Ce2RhIn8 as a function of Cd doping and the rotation of the direction of the ordered moment for the Ce2RhIn7.79Cd0.21 compound under pressure suggest important changes of the single ion anisotropy of Ce3+ induced by applying pressure and Cd doping in these systems. These changes are reflected in modifications in the CEF scheme that will ultimately affect the actual ground state of these compounds.1001616FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR2006/60440-02009/09247-32017/10581-12019/04196-3Sem informaçãoSem informaçã

    e+e--pair production in Pb-Au collisions at 158 GeV per nucleon

    Get PDF
    We present the combined results on electron-pair production in 158 GeV/n {Pb-Au} (s\sqrt{s}= 17.2 GeV) collisions taken at the CERN SPS in 1995 and 1996, and give a detailed account of the data analysis. The enhancement over the reference of neutral meson decays amounts to a factor of 2.31±0.19(stat.)±0.55(syst.)±0.69(decays)\pm0.19 (stat.)\pm0.55 (syst.)\pm0.69 (decays) for semi-central collisions (28% σ/σgeo\sigma/\sigma_{geo}) when yields are integrated over m>m> 200 MeV/c2c^2 in invariant mass. The measured yield, its stronger-than-linear scaling with NchN_{ch}, and the dominance of low pair ptp_t strongly suggest an interpretation as {\it thermal radiation} from pion annihilation in the hadronic fireball. The shape of the excess centring at mm\approx 500 MeV/c2c^2, however, cannot be described without strong medium modifications of the ρ\rho meson. The results are put into perspective by comparison to predictions from Brown-Rho scaling governed by chiral symmetry restoration, and from the spectral-function many-body treatment in which the approach to the phase boundary is less explicit.Comment: 39 pages, 40 figures, to appear in Eur.Phys.J.C. (2005
    corecore