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w 1. Introduction 

Jordan [5] proved in 1873 the following well-known theorem on normal 
subgroups of multiply transitive permutation groups: 

Let  G be a t-fold transitive permutation group on a f ini te  set f2, !f2 t =n, t >  2 
and G not the symmetric group on f2. I f  H 4 = 1 is a non-regular normal subgroup of  
G then H is ( t - 1 ) - f o l d  transitive on f2. 

This result has been refined considerably by a number of authors. Wietandt 
and Huppert  [14] introduced the notion of multiple primitivity and (t+�89 
transitivity. Wagner [13] showed that H is in fact t-fold transitive if n - t  is an 
even number and t > 3, and Saxl [8] proved that this is also true if t > 4  and 
n < 106. The only known examples of triply transitive groups with only doubly 
transitive normal subgroup are the projective linear groups PGL(2, q) in their 
usual representation on the projective line. For q odd PSL(2, q) is only doubly 
transitive on f2 and has exactly two orbits on f2 (3) where 

f2~3~= {(~, fi, ?)]cq fi, ~ distinct in f2}. 

In this paper we shall prove the following: 

Theorem A. Let  G be a triply transitive permutation group on f2 where If2l is 
divisible by 3. Then every normal subgroup H 4= 1 of  G has at most two orbits on 
f2 (3~. I f  in addition I f2l~2mod4,  then H is either triply transitive or 
PSL(2, q) _~ H _~ G G PFL(2, q) where q = n - 1. 

Theorem B. Let  G be a triply transitive permutation group on Q where I~1 is 
divisible by 3. Suppose G~ contains a normal subgroup M 4= 1 such that M~,~ has 
order prime to 3 for  three distinct points c~, fi and 7 in f2. Then G is isomorphic to a 
subgroup of  PFL(2,  q) containing PSL(2, q) where q = n - 1 .  

This paper is organized in the following way: In Sect. 2 we state a 
classification theorem of Hering, Kantor  and Seitz, and Thompson's result on 
simple Y-groups which lead to a straightforward proof of Theorem B. The main 
work is done in Sect. 3 where we develop an inductive construction. This section 
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contains a theorem on the generosity of normal subgroups (3.3) and extensions 
of Wagner's result (3.6, 3.8). 

1.1. Notation and Definitions. They are the standard definitions in Wielandt's 
book [-15]. (2 is a finite set of n points ~,/~, ?, ..., and F~_A c(2  denote subsets. G 
is a permutation group on ~2; G~.,~,... and G r denote the pointwise stabilizers of 
c~,/? . . . .  and F in G. G~r ~ is the setwise stabilizer and G r:= G w/G r  is always 
considered as a permutation group on E We shall use Sym f2 and Altf2 to 
denote the symmetric and alternating groups on f2. For  any k < n let f~k~ be the 
set of all subsets of f2 of size k and QIk) the set of all ordered sequences of k 
distinct points. Note that G induces permutation groups on f2/k~ and s in the 
obvious way. G is t-fold transitive and t-fold homogeneous on ~ if G acts 
transitively on s (+) and f2 ~ respectively. G is said to be ( t -1)- fold  generously 
transitive on f2 if G r = Sym F for any F in Q~t~. Let B be a subset of (2 ~k~ for some 
k<__n, and Br={A[A~B,  Fc_A} for F in f2 ~t~, t<Ic. Then (~,B) is a design with 
parameters t - ( l~ l ,  [AI, IBrl) if IBrl > 1 is independent of F in f2 ~. 

Let U, H be subgroups of G. Then U u is the set of all H-conjugates U h of U 
and Sylp(H ) the set of all Sylow p-subgroups of H. The set of all points of f2 
fixed by U is denoted by Fix U. 

w 2. Preliminaries 

We shall frequently use Jordan's result and other basic facts about permutation 
groups for which Wielandt's book [15] is a good reference. 

Lemma 2.1. Let G be triply transitive on Q and suppose G has a solvable normal 
subgroup H :t: 1 which is not regular on s Then If2] = 3 or 4 and G = Sym (2. 

Proof Let M 4= 1 be a minimal normal subgroup of G contained in H. Since H is 
solvable, M is elementary abelian for order p'~ and regular on ~. 

Therefore f 2 1 = p " = 3  or 2". Suppose 1~2]=2 ~" and let F:t-1 be a minimal 
normal subgroup of G~ contained in H~. Then also F is elementary abelian of 
order qr and regular on ~2\{~}. Hence [FI = qr= 2 " - 1 .  Since r must be odd, the 
second factor in 2 " =  (q + 1)(q r-  1 _ qr-2 + . . .  + 1) is 1 and therefore r = 1. So IFI =q 
and since G~.r is a complement of F in G~=F. G~,~, G~,r is cyclic as a group 
of automorphism of F and this implies that G~,~ is regular on g2\{~,/3}. Hence G 
is sharply triply transitive on (2 of order 2 m. ( 2 " -  1)- ( 2 " -  2) where 2 ~ -  1 = q is a 
prime. Since IGI is divisible by 3, we either have 2 " - 1  =3,  1s = 4  or otherwise 3 
divides 2 " -  2. The latter cannot happen. For  let S 4= 1 be a maximal subgroup of 
G~,e with order prime to 3. Note that ISI is divisible by 2 since [G~,p] = 2 " - 2  is 
even. The group (M. F)- S is normal in G = G~,~- (M. F) and has order prime to 3. 
Let i=(c~)(/~)(7, 3)... be an involution in S and conjugate i by an  appropriate g 
in G such that i '=ig=(3)(/3,7).., is contained in (M .F) .S .  Then also i .i '  
=(/~?~)... is contained in ( M . F ) . S ,  a contradiction. Hence 1~21=3 or 4. �9 

Lemma 2.2 (Bender [-2]). Let G be a doubly transitive permutation group on (2. 
Suppose the stabilizer of one point in (2 has odd order. Then G is either solvable or 
else G contains a normal subgroup isomorphic to PSL(2, q). 
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Lemma 2.3 (Suzuki I l l ] .  Let G be doubly transitive on (2 with no regular normal 
subgroup such that G o contains a regular characteristic p-subgroup where ~ is a 
point in f2 and p some prime. Then G has no transitive extension unless If2[ = 5 and 
G>Alt(5)  or If21 = 10 and G is sharply triply transitive with extension MI ~ , the 
Mathieu group on 11 points. 

Lemma 2.4 (Hering, Kantor  and Seitz [3]). Let G be a finite doubly transitive 
permutation group on f2. Suppose that +for a point ~ in ~ G o has a normal subgroup 
regular on f2\{c~}. Then G contains a normal subgroup M such that 
M~_G~_Au tM and M acts on f2 as one of the following groups in its usual 
doubly transitive representation: a sharply doubly transitive group, PSL(2, q), 
Sz(22~+1), PSU(3, q) or a group of Ree type. 

Lemma 2.5 (Martineau [6], Thompson [12]). Let G be a non-abelian finite 
simple group of order prime to 3. Then G is isomorphic to a Suzuki group 
Sz(22r+l). 

(This result now is most easily accessible in Glauberman: Factorizations in 
local subgroups of finite groups. Regional Conference Series in Mathematics 
No. 33 1977. It is contained in Corollary 7.3 on p. 48, which in turn is based on 
Goldschmidt: 2-Fusion in finite groups. Ann. of Math. (2) 99, 70-117 (1974).) 

w 3. Induction for Normal Subgroups 

3.1. Let G be a permutation group on f2 of degree n, G not the symmetric group 
Sym ~2. We will suppose G is t-fold homogeneous or t-fold transitive on f2 for 
some fixed integer t >  1. So G acts transitively on ~2 {'} or ~2 ('). Let H +  1 be a 
subgroup normal in G. A convenient measure for the drop in transitivity from G 
to H are the numbers of H-orbits on f2 {t} and (2 (~ Let therefore {U/] U~_~2 {~}} be 
the set of H-orbits on ~2 {t} and {O~lOi~_s2 (t)} the set of H-orbits on f2 (~ Define 
y(H):=I{U~}I and x(H):=l{OJI. 

Let A be a subset of g2 of size at least t and let H A, G a be the groups induced 
on A. In order to relate the transitivity on A to the transitivity on f2, define 
similar parameters y(H A) and x(HA): Let {(uA)i](uA)~ C__ A{,}} be the orbits of H{m 
(or H a) on A {t~, y(HA)=l{(uA)i}l , and {(oA)il(OA)i~A(t) } the orbits of H{A } (or H ~) 
on A (t), x(Ha)=l{(OA)i}[. Let B : = A  ~ be the set of all G-images of A and 
{B~IBi~_B } the set of H-orbits on B. Put z(H,A):=[{B~}I and B r = { A I A ~ B  , 
F__A} for any set F of size t. As an easy consequence of these definitions we 
have: 

Lemma 3.1. Let G be t-fold homogeneous on f2, let F' c F be subsets of size t - 1  
and t respectively and let A* ~_F with B = A  *G. Then x(HA), y(H a) and [Br. j are 
independent of  the particular choice of A in B and F* in f2 {t}. Therefore (~2, B) is a 
design with parameters t-(Is IA*l, IBrl). I f  G is t-fold transitive on ~, x(H) 
=y(H) .x(Hr) .  I f  H is at least ( t -1)- fold transitive on ~2, x(H) is the number of 
Hr,-orbits on t?\F'  and so x(H) divides ( n - t + l ) .  I f  in addition H{r}4=Hr, then 
y(H) is the number of the H{r,}-orbits on f2\F'. 
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Proof. Since A* =A g for some g in G, H{~} and H{a, } are conjugate in G and this 
implies y(H A) =y(HA*), x ( H  A) :x(HA*). Since G is t-fold homogeneous, F * =  F g 
for some g in G and so IBrl=lBr.I. Suppose G is t-fold transitive on ~2. 
Then x(H) = [G:Gr] :  [ H : H r ]  =([G:G{r}]: [H:H{r}]). ([G{r}:Gr]: [H{r}:Hr]):  
y (H) . [Gr:Hr] .  Since G r = S y m F  and x ( H r ) = [ S y m A : H r ] ,  we have x (H)=  
y(H).  x(Hr). If /4 is ( t -1) - fo ld  transitive we have G = G r , . H  and so x(H)=  
[G:Gr): [H:Hr] : [Gr , :Gr] :  [ H r , : H r ] = ( n - t +  l): [Hr,:Hr] where [H r , :H r ]  
is the length of the Hr,-orbit containing 7 = F \ U .  If H{r } + Hr, H{r ~ is transitive on 
F since H{r}___ G{r }. Therefore IH{r, ~ ~l = IH{rl 7] = IH{r}[ " t - 1  Let l=  [H{r, } :H{r, } ~] be 
the length of the H{r,}-orbit containing ;). 'Then l=(IHr'l . IHr, I): (IHrl �9 IHrl'. t -1) 
= t ! .  ( n - t +  1): (IHrl - x ( H ) ) = ( ( n - t + l ) :  x(H)),  x(Hr). Therefore y (H)=  
( n - t  + 1). I-1 is the number of H{r,}-orbits on Q\F ' .  �9 

The following proposition allows us to discuss the transitivity properties of 
H in terms of its transitivity on designs (•, B): 

Proposition 3.2. Let G be a t-fold homogeneous group on f2 of degree n, 1 < t < n  
and H ~ 1 a normal subgroup of G. Let F be a set of size t and F ~_ A ~_ f2 with B 
= A G. I f  H{r } acts transitively on Br, then G A is t-fold homogeneous on A and y(H) 

z(H, A).y(H~). I f  G is t-fold transitive on (2 and i f / 4  r acts transitively on B r, 
then G A is t-fold transitive on A and x (H)=z (H,  A). x(H~). 

This shows that H is t-fold homogeneous (transitive) on f2 if and only if H is 
transitive on the set of blocks of ((2, B) and t-fold homogeneous (transitive) on 
each block. 

Proof To prove the first part of 3.2 we choose a set A i in each M-orbit Bi on B, i 
=1 . . . .  , z=z (H ,  A). Choose in each A i y '=y(H A') sets F~j, j =  1, .. . ,y',  such that F/j 
belongs to (U~)j. By Lemma 3.1 y(H~' )=y(H ~) and so we obtain exactly 
z . y ( H  A) sets F~ and we only need to show that each /4-orbit on ~?{t~ contains 
exactly one of these sets. 

Suppose Fh=F ' for some h in H where F:=F~j___Ai= :A and _F':=I~I,j,~A i, 
= :A'. Then both A h and A' contain F' and since our assumption implies that 
H~r, ~ is transitive on Br,, we conclude that there is some k in H~r, ~ such that A hk 
=A'. This implies that A' and A belong to the same H-orbit on B and so i= i '  
and A =A'. Therefore h. k is contained in H{a ~ and since Fh:k=Uk=F ', F and F' 
belong to the same H~7orbi t  on A ~t). Thus j=j ' ,  F' = F  and each H-orbit  on ~2 {t} 
contains at most one of the F,.i's. On the other hand, any F* in (~t~ is contained 
in some A*eB since G is t-fold homogeneous and this implies that F* is an H- 
image of one of the Firs. Hence y(H) = z(H, A). y(Ha). We evaluate this equation 
for H = G  and I = y ( G ) = z ( G , A ) . y ( G  A) implies y(GA)=I, i.e. G a is t-fold homo- 
geneous on A and the same is true for any other A' in B. The second part of 3.2 
may be proved in very much the same way by considering ordered t-sequences 
(r 0 in A I �9 

3.2. Suppose G is t-fold transitive on f2 and let A be a subset of Q as in 
proposition 3.2, Then G ~ is t-fold transitive on A but H a does not necessarily 
inherit the transitivity properties of H on (2. 
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Definition. Let G be t-fold transitive on ~2, 1 ~t~lK2[ and let H ~  1 be normal in 
G. Let F be a subset of f2 of size t and z/~_E Then A is inductive with respect to 
H if the following conditions hold: 

i) H r permutes B r =  {AglgeG, Fc_Ag} transitively, and 
ii) If H is t'-fold transitive on f2, 1 __< t '<  t, then H a is (-fold transitive on A. 

We shall show that certain types of subsets of ~2 are inductive. First suppose 
G + Sym f2 and A = F is any set of size t. Then clearly condition i) is satisfied. If t 
=3  and H is regular, IY2[--tH[ is a power of 2 and so H a = l ,  illustrating the 
definition. Apart  from this case H is at least ( t -1) - fo ld  transitive and therefore 
A is inductive if and only if H a = Sym A, i.e. H is generously ( t -  1)-fold transitive 
on ~. We prove the following generosity theorem originally proposed by Ito 
[4] for quadruply transitive groups, see also Neumann (Theorem 9.1 in [7]) and 
Saxl [8]. 

Theorem 3.3. Let G be a t-fold transitive permutation group on .(2 of degree n, 
G :4= Sym f2 and t > 2. Suppose H ~ 1 is a normal subgroup of G. 

i) I f  t=2 ,  H is generously transitive if and only if H has even order. In 
particular H is generously transitive if G contains no regular normal subgroup. 

ii) I f  t=3 ,  H is generously 2-fold transitive except if H is regular or if 
PSL(2, q)c_ H ~_ G ~_ PFL(2, q) in their usual representation on the projective line, 
q+  l = n = 0 m o d 4 .  

iii) I f  t > 4, H is generously ( t -1)- fo ld  transitive. 

Proof. Let F be a set of size t. Since G is t-fold transitive, G{r } acts on F like 
Sym E To show that H is ( t -  1)-fold generously transitive, we have to prove the 
same is true for H~r }. Since H{r } is normal in G{r}, it suffices to show that H{r } 
contains an element h which acts on F like a transposition. Since G is also t-fold 
homogeneous on f2 one may choose a particular F to show the required 
property. Let therefore A be a subset of f2 with IAI- - t -2 .  Then H is ( t -1) - fo ld  
generously transitive on f2 if and only if H a has even order. For  assume that IH~l 
is even. Then there is some element h in H a interchanging two points c~ and fi in 
f2\A. Take F = A  ~ {~, fi} and h acts on F like a transposition. The converse 
implication is trivial. 

(a) If t =2,  A ~ and (i) is proved if we can show, that H has even order if G 
contains no regular normal subgroup. Let M be a minimal normal subgroup of 
G contained in H. By a result of Burnside, M is simple and by the Feit- 
Thompsom Theorem H has even order. 

(b) Now let t=3 .  Then H is either regular or doubly transitive. If H is 
regular, H~= 1 and by the above remark H is certainly not generously doubly 
transitive. So suppose H is doubly transitive. Put {a} = A. Then we have to show 
that H~ has even order if G is not contained in PFL(2, n -  1). Hence assume H~ 
has odd order. Then a theorem of Bender, Lemma 2.2, applies and H is either 
solvable or otherwise contains PSL(2, q) as a normal subgroup for some prime 
power q. Lemma 2.1 implies that H cannot be solvable unless G=Sym(3)  or 
Sym(4) which contradicts our assumption. Hence PSL(2, q)~ H and using results 
of Burnside one concludes that PSL(2, q) is characteristic i n / / a n d  hence normal 
in G. Therefore PSL(2, q) is doubly transitive on f2 and checking through 
Dickson's list of subgroups of PSL(2, q) we find that PSL(2, q) acts on the 
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projective line PG(1, q) in its usual representation. Hence q + 1 =n ,  

PSL(2, n -  1) _~ H ~ G c PFL(2, n -  1) 

and n =- 0 mod  4 since IH~I is odd. 

(c) Now suppose t > 4 .  Since G :t=Sym (2, H is at least ( t -  1)-fold transitive on 
Q. Let F' be a subset of ~ with [F'I = t -  3. Then G r, is triply transitive on ~2\F' 
and at the beginning of the proof  we saw that H is ( t -1 ) - fo ld  generously 
transitive on (~ if and only if H r, is doubly transitive on ~?\F'. This is the case if 
H r, is not one of the exceptions in (ii). But H r, cannot be regular on O \ F ' ,  
because then H could only be ( t -2 ) - fo ld  transitive on fL Similarly if 

PSL(2, n - [ F ' [ -  1) ~_H r, _~ G r, ~PFL(2 ,  n - I F ' I -  1), 

as permutat ion groups on f2\F ' ,  let F* be a subset of F '  with I/'*[ = IF'I - 1. Then 
Gr, and Hr ,  are transitive extensions of G r, and Hr,.  Since n > t + 2 ,  n - l F ' l  >5  
and therefore by L e m m a  2.3, G r , = M l l  , the Mathieu group on 11 points. Since 
M11 is simple, Hr ,  = M 11 is quadruply transitive on ~2\F*. In particular Hr ,  is 3- 
fold generously transitive on Q \ F *  and hence H r, is doubly generously tran- 
sitive on ~2\F'. �9 

A second type of inductive sets arises from subgroups of H r where F is in 
~?{t}. Let p be some prime and U a p-subgroup of H r with A : = F i x  U. If U is a 
Sylow p-subgroup of H r, then H r acts transitively on Br={AglAg~_F, g~G} by 
Sylow's theorem and the same is true if U is a G-strongly closed subgroup of a 
Sylow p-subgroup of H r. 

Proposition 3.4. Let G be a t-fold transitive group on f2, 2 < t, G ~ Sym (2 and let 
H +  1 be a normal subgroup of  G. Suppose F c O  is a set of  size t and p some 
prime. Let U be a p-subgroup of  H r with A : =  Fix U such that H r acts transitively 
on B r. Then A is inductive with respect to G and H. 

Proof. G a is t-fold transitive on A by Proposition 3.2 and so A is inductive with 
respect to G. The same argument applies if H is t-fold transitive on g?. If  H is 
regular, A = f2 is inductive with respect to H. Hence assume H is exactly ( t - 1 ) -  
fold transitive on f2 and we show that then H A is ( t -1 ) - fo ld  transitive on A. 
Since H a =H{A}/H a ~H{a }- Ga/Ga~G a, we consider H a as a normal subgroup of 
G a. Therefore H a is either a) ( t -  1)-fold transitive on A, b) regular on A and t = 3, 
c) Ga=SymA,  H a = A l t A  and IAI = t  or d) H a = l .  Let F ' c F  be a set of size t - 1 .  
If H r, should be transitive on B r , = { A g I F ' c A  g, g~G}, we use Proposit ion 3.2 
(replacing G by H and t by t - 1 )  to show that H ~ is ( t -1 ) - fo ld  transitive on 
A. Hence assume that H r, acts not transitively on Br,. Let S be in Sylp(Hr, ) 
containing U. Then U~=S and the same is true for any subgroup T~_S with 
F i x T = A .  Let therefore T be maximal in S with F i x T = A  and let h be in 
Ns(T)\T~= ~. Then h is in H{a} c~ H r, but not in H A. This implies IAI > t - - t  + p > t  
and (Ha)r, 4:1. Hence b)-d) do not occur and the proposition is proved. �9 

Let G be t-fold transitive on ~ and H ( t -  1)-fold transitive. Suppose U and A 
satisfy the hypotheses of 3.4 such that U is maximal with A = F i x  U, i.e. 
U~Sylp(HA). Then GA~>_H a are t- and ( t -1 ) - fo ld  transitive groups on A re- 
spectively. Note  that IAI ~[g21 modp.  Let N=NG(U)c_G{~ } and M = N c ~ H .  Then 
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G{~}=G~.N and H{A } = H  A-M by the Frattini argument. Hence G ~ 
= N -  GA/G A ~- N / N  ~ G A = N A and H ~ = M .  H J H  A _~ M A. Our assumption is in 
particular true if U is a Sylow p-subgroup of H r. In this case the last remark 
implies that (HA)r, is a p ' -group for every F* _~ A of size t. By 3.2 we obtain x(H) 
= z ( H ,  A ) . x ( H  ~) and we calculate z = z ( H ,  A). By definition 

z = [G: G{J : [H :H{J = [G :(H- G{A}) ] = [G :H. N] = ] U ~ 

Suppose U~Sylp(Hr)  and p does not divide ( n - t + l ) / x ( H ) .  Then, if P ' c F  
has size t - 1 ,  U is contained in Sylp(Hr, ) since [H r, :Hr]  = ( n - t +  1)/x(H) by 3.1. 
By the Frattini argument G r, = N  r,. Hr, .  Since G = Gr,. H, we obtain G = N .  H 
and therefore z = 1. Hence we have proved our main induction theorem: 

Theorem 3.5. Let  G be a t-fold transitive group on t2 of  degree n, t > 2, G 4= Sym t? 
and let H +  1 be a non-regular normal subgroup of  G. Let  F be in t2 {t}, p some 
prime and U a Sylow p-subgroup o f  H r with Fix U = A. 

Then G A is a t-fold transitive group on A o f  degree t A 1 - n  modp,  H A is at least 
( t - 1 ) - f o l d  transitive on A, HA<aG ~ and (HA)r is a p'-group. Furthermore x (H)  
= ([ U~[:I UH[) �9 x ( H  A) and lUG[ :1U u] = 1 if  p does not divide ( n -  t + 1)/x(H). In this 
case H is t-fold transitive on t2 i f  and only if  H A is t-fold transitive on A. 

3.3. Wagner's Theorem and Related Results. In 1966 Wagner [13] proved that 
normal subgroups of triply transitive groups of odd degree n > 3 are also triply 
transitive. A similar result is due to Ito [41 who has shown that normal 
subgroups of quadruply transitive groups of degree n > 5 ,  n ~ 0 m o d 3 ,  are 
quadruply transitive. As an application of 3.5 we prove the following theorem 
containing Wagner 's  result and a major  part  of Ito's theorem. 

Theorem 3.6. Let  G be t-fold transitive on f2 of  degree n, t > 3 ,  G4=Symf2 and 
let H 4= 1 be a normal subgroup of  G. Suppose p is a prime, p <t ,  not dividing 
( n - t +  1) and let x be the number of  H-orbits on Q(t). Let  r be the smallest posi- 
tive number with r=--(n- t  + 1): x modp.  Then 0 < x .  r < p < t .  

Proof. The assumptions imply that H is at least ( t -1 ) - fo ld  transitive since, if 
t=3 ,  p = 2  and H is regular then [Ol is a power of 2, i.e. 2 divides n - 2 .  Let F 
be in f2 {'} and U in Sylp(Hr) with A = F i x U ,  By 3.5 HA~__G A, x : x ( H A ) ,  r =_ 
( I A l - t + l ) :  x ( H A ) ~ - O m o d p  and so H A, G A satisfy the hypotheses of 3.6 except 
if GA=SymA. In the latter case we can assume H A = A l t A  and ] A l = t + l  
since otherwise H a is t-fold transitive on A and so x ( H a ) = x = l .  Since HA= 
Alt A implies x(H A) = 2, we have 2 = IAI - t + 1 - n - t + 1 ~ 0 rood p, i.e. p > 2, and 
r = (n - t + 1): x - 1. Hence 0 < r .  x = 2 < p. Assume therefore by induction that H r 
is a p'-group. Since [H r, :Hr] = ( n - t +  1):x for any F'  c F  of size t - 1 ,  also H r, 
is a p ' -group and so any element in H of p-order fixes at most  t - 2  points. Since 
H is ( t - D - f o l d  transitive on f2, H{r, ~ acts on F'  like SymF' .  

Choose some element h in H{r, } consisting of a single p-cycle and t - 1 - p  
fixed points inside F'. We can assume that h has order p. Let T 1 . . . .  , T x be the 
Hr,-orbits on f2 \F '  (Lemma 3.1). Since h normalizes Hr, , h induces a per- 
mutat ion on the set {T1, ..., Tx}. We show that h acts trivially on this set. For, 
since x ~ 0  mod p, h fixes at least one of the T[s, say T[' = 7"1. Suppose T2 = T 3 
and choose some g~ in G{r, } such that hg~lr,=h-t lr , .  Since G r, acts transitively 
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on {T~ . . . . .  Tx} there is some g2 in G r, such that Tfl"g2=T1. Put g = g l  "g2 and 
note that also hglr,=h-l[r,, i . e .h .h  g is contained in H r, and therefore fixes all 
the T/'s. Hence TI=T~ 'h~=T~=T2h 'g=Tf  and so T 2 = T  3. Thus h fixes all the 
T[s as sets and has in each of them at least r - ( n - t + l ) : x = [ T ~ [  fixed points. 
Therefore we count in all at least t - 1 - p  + x .  r points fixed by h. Since this 
number  is at most  t - 2 ,  the required property follows. �9 

Remark. In Theorem 3.6 H is in fact t-fold transitive if t < 6. A straightforward 
but rather length proof  eliminates the various possibilities l < x < p < t .  For  
details the interested reader is referred to my Ph.D. thesis [9]. 

Corollary 3.7. Let G be t-fold transitive of degree n, 3 <= t < 6, G * Sym O and let 
H ~ 1 be a normal subgroup of G. Suppose (n - t + 1) is not divisible by some prime 
p less than t. Then H is t-fold transitive. 

As a second application of Theorem 3.5 we deal with the case ( n - t +  1) 
- 0 mod p for some prime p < t but ( n -  t + 1): x(H) ~ 0 mod p. In this situation 
we show x(It)=l=y(H). As in the proof  of Theorem 3.6 we can assume that 
elements of p-order in H fix at most  t - 2  points. Let F '  be a set of size t - 1  
and let h be an element in H{r, } consisting of a p-cycle and t - l - p  fixed 
points. If x(H)=y(H),  h fixes the T~'s setwise by Lemma 3.1 and so h has at least 
t - 1 - p  + r - x  fixed points where 0 < r - I r~[  modp .  This is a contradiction since 
in particular p divides x. Hence x(H)+y(H)  and by 3.1 x(Hr)+ 1, i.e. H is not 
generously ( t -1 ) - fo ld  transitive. Together with Theorem 3.3 we therefore obtain: 

Theorem 3.8. Let G be t-fold transitive on f2 of degree n, 3 < t and G 4= Sym f~. Let 
H ~= 1 be a non-regular normal subgroup of G such that H has x > 1 orbits on f2 (t). 
Suppose there is some prime p < t dividing n - t + 1. Then p also divides (n - t + 1): x 
except if t = 3 and PSL(2, q) ~_ H ~_ G ~_ PFL(2, q) with q = n -  1 = 3 mod  4. 

The last result shows that in general x(H) is odd for triply transitive groups 
of degree n ~ 2 mod 4. A similar result is due to Bannai [1~ who showed that x is 
odd for t > 6 and arbitrary degree. 

w 4. Proof of the Theorems 

The projective linear groups PGL(2, q) are triply transitive on the projective line 
f2=PG,(q). For  q even, PGL(2, q)=PSL(2,  q) is triply transitive on PGI(q) 
(illustrating Wagner 's  theorem) while for q odd, PSL(2, q) has exactly two orbits 
on f2 (3). We show that a triply transitive group G of degree n - 0 m o d 3  with 
Ia~,a,~l ~ 0 m o d 3  is one of these groups. 

Proof of Theorem B. Let M* be a minimal normal subgroup of G~ contained in 
M. By a result of Burnside M* is either simple and primitive on f2\{~} or else 
an elementary abelian p-group, regular on g2\{c~}. In the first case M* has order 
prime to 3 since M* is 3/2 transitive on ~2\{c~} and [M~,~I ~g0 rood 3. Hence by 
Lemma 2.5, M*~Sz(22r+1) and the primitivity of M* on f2\{c~} implies that 
GJM* is contained in the outer automorphism group of M*. From this 
information we conclude that M* acts on f2\{c~} in the usual representation of a 
Suzuki group on q 2 + l  points where q=22r+1. (See Theorems 9 and 11 in 
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Suzuki's paper [101,) The Sylow 2-subgroup of M~ is characteristic in G~,p and 
regular on Q\{e,/~} and so G~ is not extendable by Lemma 2.3, a contradiction. 
Hence M* is elementary abelian and G must be one of the groups in Lemma 2.4 
with minimal normal subgroup H*. Since H* is not solvable by Lemma 2.1, H* 
cannot be sharply doubly transitive. H* ~-Sz is impossible since 3 divides n and 
similarly H* cannot be a group of Ree type since their representation degree is 
- 1  rood3. Finally H*~-PSU(3, q) leads to a contradiction since these groups 
are not normal in a triply transitive group. Hence H* 
=PSL(2, q)~_H~_G~_PFL(2, q), q = n - 1  and the theorem is proved. �9 

Proof of Theorem A. Let S be a Sylow 3-subgroup of H~,~,~ for 3 distinct points 
and A =FixS .  By Theorem 3.5, G a is one of the groups in theorem B and 
therefore x (H)= x (H ~) __< 2. If in addition n ~ 2 rood 4, by Theorem 3.8 either x (H) 
=1 or PSL(2, q)<H_<G_<PFL(2, q) where q = n - 1  and the proof is 
completed. �9 

As a final note we remark that for the proof of Theorem A very little 
information from Theorem B is required. If therefore one could show that a 
group as in Theorem B with n -  1 mod 3 is a "known" group, then Theorem A 
would also hold for triply transitive groups of degree n-- 1 rood 3. 
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