2,201 research outputs found

    Opportunities for agroforestry in Finland

    Get PDF
    N/

    High-Resolution spectroscopy of the low-mass X-ray binary EXO 0748-67

    Full text link
    We present initial results from observations of the low-mass X-ray binary EXO 0748-67 with the Reflection Grating Spectrometer on board the XMM-Newton Observatory. The spectra exhibit discrete structure due to absorption and emission from ionized neon, oxygen, and nitrogen. We use the quantitative constraints imposed by the spectral features to develop an empirical model of the circumsource material. This consists of a thickened accretion disk with emission and absorption in the plasma orbiting high above the binary plane. This model presents challenges to current theories of accretion in X-ray binary systems.Comment: 5 pages, 4 figures, accepted by A&A letters, XMM special issu

    A New Comprehensive 2-D Model of the Point Spread Functions of the XMM-Newton EPIC Telescopes : Spurious Source Suppression and Improved Positional Accuracy

    Full text link
    We describe here a new full 2-D parameterization of the PSFs of the three XMM-Newton EPIC telescopes as a function of instrument, energy, off-axis angle and azimuthal angle, covering the whole field-of-view of the three EPIC detectors. It models the general PSF envelopes, the primary and secondary spokes, their radial dependencies, and the large-scale azimuthal variations. This PSF model has been constructed via the stacking and centering of a large number of bright, but not significantly piled-up point sources from the full field-of-view of each EPIC detector, and azimuthally filtering the resultant PSF envelopes to form the spoke structures and the gross azimuthal shapes observed. This PSF model is available for use within the XMM-Newton Science Analysis System via the usage of Current Calibration Files XRTi_XPSF_0011.CCF and later versions. Initial source-searching tests showed substantial reductions in the numbers of spurious sources being detected in the wings of bright point sources. Furthermore, we have uncovered a systematic error in the previous PSF system, affecting the entire mission to date, whereby returned source RA and Dec values are seen to vary sinusoidally about the true position (amplitude ~0.8") with source azimuthal position. The new PSF system is now available and is seen as a major improvement with regard to the detection of spurious sources. The new PSF also largely removes the discovered astrometry error and is seen to improve the positional accuracy of EPIC. The modular nature of the PSF system allows for further refinements in the future.Comment: Accepted for publication in A&A. 15 pages, 13 figures (some of reduced quality). A full-resolution version is available at http://www.star.le.ac.uk/~amr30/amr_PSFpaper.pd

    XMM-Newton Reflection Grating Spectrometer Observations of the Prototypical Starburst Galaxy M82

    Full text link
    We present results from XMM-Newton Reflection Grating Spectrometer observations of the prototypical starburst galaxy M82. These high resolution spectra represent the best X-ray spectra to date of a starburst galaxy. A complex array of lines from species over a wide range of temperatures is seen, the most prominent being due to Lyman-alpha emission from abundant low Z elements such as N, O, Ne, Mg and Si. Emission lines from Helium-like charge states of the same elements are also seen in emission, as are strong lines from the entire Fe-L series. Further, the OVII line complex is resolved and is seen to be consistent with gas in collisional ionization equilibrium. Spectral fitting indicates emission from a large mass of gas with a differential emission measure over a range of temperatures (from 0.2 keV to 1.6 keV, peaking at 0.7 keV), and evidence for super-solar abundances of several elements is indicated. Spatial analysis of the data indicates that low energy emission is more extended to the south and east of the nucleus than to the north and west. Higher energy emission is far more centrally concentrated.Comment: 5 pages, 4 figures, MNRAS accepte

    Statistical evaluation of the flux cross-calibration of the XMM-Newton EPIC cameras

    Full text link
    The second XMM-Newton serendipitous source catalogue, 2XMM, provides the ideal data base for performing a statistical evaluation of the flux cross-calibration of the XMM-Newton European Photon Imaging Cameras (EPIC). We aim to evaluate the status of the relative flux calibration of the EPIC cameras on board XMM-Newton (MOS1, MOS2, and pn) and investigate the dependence of the calibration on energy, position in the field of view of the X-ray detectors, and lifetime of the mission. We compiled the distribution of flux percentage differences for large samples of 'good quality' objects detected with at least two of the EPIC cameras. The mean offset of the fluxes and dispersion of the distributions was then found by Gaussian fitting. Count rate to flux conversion was performed with a fixed spectral model. The impact on the results of varying this model was investigated. Excellent agreement was found between the two EPIC MOS cameras to better than 4% from 0.2 keV to 12.0 keV. MOS cameras register 7-9% higher flux than pn below 4.5 keV and 10-13% flux excess above 4.5 keV. No evolution of the flux ratios is seen with time, except at energies below 0.5 keV, where we found a strong decrease in the MOS to pn flux ratio with time. This effect is known to be due to a gradually degrading MOS redistribution function. The flux ratios show some dependence on distance from the optical axis in the sense that the MOS to pn flux excess increases with off-axis angle. Furthermore, in the 4.5-12.0 keV band there is a strong dependence of the MOS to pn excess flux on the azimuthal-angle. These results strongly suggest that the calibration of the Reflection Grating Array (RGA) blocking factors is incorrect at high energies. Finally, we recommend ways to improve the calculation of fluxes in future versions of XMM-Newton source catalogues.Comment: 11 pages, 10 figures, 3 tables. Abridged Abstract. Accepted for publication in Astronomy and Astrophysic

    American Values and Popular Culture in the Twenties: The Little Blue Books

    Get PDF

    The XMM-Newton view of the Crab

    Get PDF
    Aims. We discuss the current X-ray view of the Crab Nebula and Pulsar, summarising our analysis of observations of the source with the EPIC-pn camera on board the XMM-Newton observatory. Different modes of EPIC-pn were combined in order to yield a complete scenario of the spectral properties of the Crab resolved in space and time (pulse phase). In addition we give a description of the special EPIC-pn Burst mode and guidance for data reduction in that mode. Methods. We analysed spectra for the nebula and pulsar separately in the 0.6−12.0 keV energy band. All data were processed with the SAS 6.0.0 XMM-Newton Scientific Analysis System package; models were fitted to the data with XSPEC 11. The high time resolution of EPIC-pn in its Burst mode (7 μs) was used for a phase resolved analysis of the pulsar spectrum, after determination of the period with epoch folding techniques. Data from the SmallWindow mode were processed and corrected for pile-up allowing for spectroscopy simultaneously resolved in space and time. Results. The spatial variation of the spectrum over the entire region of the Crab shows a gradual spectral softening from the inner pulsar region to the outer nebula region with a variation in photon index, Γ, from 2.0 to 2.4. Pulse phase resolved spectroscopy of the Crab Pulsar reveals a phase dependent modulation of the photon index in form of a significant hardening of the spectrum in the inter-peak phase from Γ = 1.7 during the pulse peak to Γ = 1.5
    corecore