303 research outputs found

    The Exceptionally Soft X-ray Spectrum of the Low-mass Starburst Galaxy NGC 1705

    Get PDF
    NGC 1705 is one of the optically brightest and best studied dwarf galaxies. It appears to be in the late stage of a major starburst and contains a young super star cluster. Type II supernovae are therefore likely to have been a major effect in the recent evolution of this galaxy and are likely to have produced a superbubble whose affects on the low-density ambient interstellar medium can be ideally studied. ROSAT PSPC observations of this galaxy reveal two striking blobs of X-ray emission embedded in \Ha loops which can be interpreted as both sides of the upper plumes of the same superbubble. These sources are a surprise. They are much softer than those observed from other starburst dwarf galaxies, and are so soft that they should have been blocked if the observed Galactic HI column density were uniformly distributed across NGC 1705 or if the sources were embedded in the HI disk of NGC 1705. In addition, the total X-ray luminosity in the ROSAT energy band of 1.2x10^{38} erg s^{-1} is low in comparison to similar objects. We discuss possible models for the two X-ray peaks in NGC 1705 and find that the sources most likely originate from relatively cool gas of one single superbubble in NGC 1705. The implications of the exceptional softness of these sources are addressed in terms of intrinsic properties of NGC 1705 and the nature of the foreground Galactic absorption.Comment: 7 pages, 2 ps-figures, LATEX-file; accepted for publication in ApJ.Letter

    BCS pairing in a trapped dipolar Fermi gase

    Full text link
    We present a detailed study of the BCS pairing transition in a trapped polarized dipolar Fermi gas. In the case of a shallow nearly spherical trap, we find the decrease of the transition temperature as a function of the trap aspect ratio and predict the existence of the optimal trap geometry. The latter corresponds to the highest critical temperature of the BCS transition for a given number of particles. We also derive the phase diagram for an ultracold trapped dipolar Fermi gases in the situation, where the trap frequencies can be of the order of the critical temperature of the BCS transition in the homogeneous case, and find the critical value of the dipole-dipole interaction energy, below which the BCS transition ceases to exist. The critical dipole strength is obtained as a function of the trap aspect ratio. Alternatively, for a given dipole strength there is a critical value of the trap anisotropy for the BCS state to appear. The order parameter calculated at criticality, exhibits nover non-monotonic behavior resulted from the combined effect of the confining potential and anisotropic character of the interparticle dipole-dipole interation.Comment: 14 pages, 3 figure

    The Sensitivity of Harassment to Orbit: Mass Loss from Early-Type Dwarfs in Galaxy Clusters

    Get PDF
    We conduct a comprehensive numerical study of the orbital dependence of harassment on early-type dwarfs consisting of 168 different orbits within a realistic, Virgo-like cluster, varying in eccentricity and pericentre distance. We find harassment is only effective at stripping stars or truncating their stellar disks for orbits that enter deep into the cluster core. Comparing to the orbital distribution in cosmological simulations, we find that the majority of the orbits (more than three quarters) result in no stellar mass loss. We also study the effects on the radial profiles of the globular cluster systems of early-type dwarfs. We find these are significantly altered only if harassment is very strong. This suggests that perhaps most early-type dwarfs in clusters such as Virgo have not suffered any tidal stripping of stars or globular clusters due to harassment, as these components are safely embedded deep within their dark matter halo. We demonstrate that this result is actually consistent with an earlier study of harassment of dwarf galaxies, despite the apparent contradiction. Those few dwarf models that do suffer stellar stripping are found out to the virial radius of the cluster at redshift=0, which mixes them in with less strongly harassed galaxies. However when placed on phase-space diagrams, strongly harassed galaxies are found offset to lower velocities compared to weakly harassed galaxies. This remains true in a cosmological simulation, even when halos have a wide range of masses and concentrations. Thus phase-space diagrams may be a useful tool for determining the relative likelihood that galaxies have been strongly or weakly harassed.Comment: 17 pages, 13 figures, Accepted to MNRAS 8th September 201

    The sensitivity of harassment to orbit: Mass loss from early-type dwarfs in galaxy clusters

    Get PDF
    We conduct a comprehensive numerical study of the orbital dependence of harassment on early-type dwarfs consisting of 168 different orbits within a realistic, Virgo-like cluster, varying in eccentricity and pericentre distance. We find harassment is only effective at stripping stars or truncating their stellar discs for orbits that enter deep into the cluster core. Comparing to the orbital distribution in cosmological simulations, we find that the majority of the orbits (more than three quarters) result in no stellar mass loss. We also study the effects on the radial profiles of the globular cluster systems of early-type dwarfs. We find these are significantly altered only if harassment is very strong. This suggests that perhaps most early-type dwarfs in clusters such as Virgo have not suffered any tidal stripping of stars or globular clusters due to harassment, as these components are safely embedded deep within their dark matter halo. We demonstrate that this result is actually consistent with an earlier study of harassment of dwarf galaxies, despite the apparent contradiction. Those few dwarf models that do suffer stellar stripping are found out to the virial radius of the cluster at redshift = 0, which mixes them in with less strongly harassed galaxies. However when placed on phase-space diagrams, strongly harassed galaxies are found offset to lower velocities compared to weakly harassed galaxies. This remains true in a cosmological simulation, even when haloes have a wide range of masses and concentrations. Thus phase-space diagrams may be a useful tool for determining the relative likelihood that galaxies have been strongly or weakly harassed

    Production of a chromium Bose-Einstein condensate

    Full text link
    The recent achievement of Bose-Einstein condensation of chromium atoms [1] has opened longed-for experimental access to a degenerate quantum gas with long-range and anisotropic interaction. Due to the large magnetic moment of chromium atoms of 6 {Ό\mu}B, in contrast to other Bose- Einstein condensates (BECs), magnetic dipole-dipole interaction plays an important role in a chromium BEC. Many new physical properties of degenerate gases arising from these magnetic forces have been predicted in the past and can now be studied experimentally. Besides these phenomena, the large dipole moment leads to a breakdown of standard methods for the creation of a chromium BEC. Cooling and trapping methods had to be adapted to the special electronic structure of chromium to reach the regime of quantum degeneracy. Some of them apply generally to gases with large dipolar forces. We present here a detailed discussion of the experimental techniques which are used to create a chromium BEC and alow us to produce pure condensates with up to {10510^5} atoms in an optical dipole trap. We also describe the methods used to determine the trapping parameters.Comment: 17 pages, 9 figure

    Abundance Gradients and the Formation of the Milky Way

    Get PDF
    In this paper we adopt a chemical evolution model, which is an improved version of the Chiappini, Matteucci and Gratton (1997) model, assuming two main accretion episodes for the formation of the Galaxy. The present model takes into account in more detail than previously the halo density distribution and explores the effects of a threshold density in the star formation process, during both the halo and disk phases. In the comparison between model predictions and available data, we have focused our attention on abundance gradients as well as gas, stellar and star formation rate distributions along the disk. We suggest that the mechanism for the formation of the halo leaves detectable imprints on the chemical properties of the outer regions of the disk, whereas the evolution of the halo and the inner disk are almost completely disentangled. This is due to the fact that the halo and disk densities are comparable at large Galactocentric distances and therefore the gas lost from the halo can substantially contribute to building up the outer disk. We also show that the existence of a threshold density for the star formation rate, both in the halo and disk phase, is necessary to reproduce the majority of observational data in the solar vicinity and in the whole disk. Moreover, we predict that the abundance gradients along the Galactic disk must have increased with time and that the average [alpha/Fe] ratio in stars (halo plus disk) slightly decrease going from 4 to 10 Kpcs from the Galactic center. We also show that the same ratios increase substantially towards the outermost disk regions and the expected scatter in the stellar ages decreases, because the outermost regions are dominated by halo stars.Comment: 41 pages (including the figures), To be published in Ap

    A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE) XV. The Halpha luminosity function of the Virgo cluster

    Full text link
    We use a complete set of deep narrow-band imaging data for 384 galaxies gathered during the VESTIGE survey to derive the first Halpha luminosity function (LF) of the Virgo cluster within R200. The data allow us to cover the whole dynamic range of the Halpha LF (10^36<LHa<10^42 erg s^-1). After they are corrected for [NII] contamination and dust attenuation, the data are used to derive the SFR function in the range 10^-4<SFR<10 Mo yr^-1. These LF are compared to those derived at other frequencies or using different tracers of star formation in Virgo, in other nearby and high-z clusters, in the field, and to those predicted by the IllustrisTNG cosmological hydrodynamical simulations. The Halpha LF of the Virgo cluster is fairly flat (a=-1.07) in the range 10^38.5<LHa<10^40.5 erg s^-1, and it abruptly decreases at lower luminosities. When compared to those derived for other nearby clusters and for the field, the slope and the characteristic luminosity of the Schechter function change as a function of the dynamical mass of the system, of the temperature of the X-rays gas, and of the dynamical pressure exerted on the interstellar medium of galaxies moving at high velocity within the intracluster medium. All these trends can be explained in a scenario in which the activity of SF is reduced in massive clusters due to their hydrodynamical interaction with the surrounding medium, suggesting once again that ram-pressure stripping is the dominant mechanism affecting galaxy evolution in local clusters of dynamical mass M200>10^14 Mo. The comparison with the IllustrisTNG cosmological hydrodynamical simulations shows a more pronounced decrease at the faint end of the distribution. If Virgo is representative of typical nearby clusters of similar mass, this difference suggests that the stripping process in simulated galaxies in these environments is more efficient than observed.Comment: Accepted for publication on A&

    Neurotrophic Factor Signaling in Alcoholism

    Get PDF
    This article presents the proceedings of a symposium presented at the meeting of the International Society for the Biomedical Research on Alcoholism (ISBRA), held in Manheim, Germany, in September 2004. The organizers and chairpersons were Subhash C. Pandey and Toshikazu Saito. The presentations were (1) Ethanol and NMDA receptor coupling to ERK signaling, by L.J. Chandler;(2) Ethanol modulation of CREB: Role in neurogenesis, by Fulton Crews;(3) Serotonin dysfunction and alcohol preference in mice deficient in brain-derived neurotrophic factor (BDNF), by Julie G. Hensler; (4) BDNF gene and related signaling: role in anxiety and alcohol dependence and preference, by Subhash C. Pandey; (5) BDNF and CREB: role in ethanol induced neuronal damage, Wataru Ukai

    Optimized loading of an optical dipole trap for the production of Chromium BECs

    Full text link
    We report on a strategy to maximize the number of chromium atoms transferred from a magneto-optical trap into an optical trap through accumulation in metastable states via strong optical pumping. We analyse how the number of atoms in a chromium Bose Einstein condensate can be raised by a proper handling of the metastable state populations. Four laser diodes have been implemented to address the four levels that are populated during the MOT phase. The individual importance of each state is specified. To stabilize two of our laser diode, we have developed a simple ultrastable passive reference cavity whose long term stability is better than 1 MHz

    The physics of dipolar bosonic quantum gases

    Full text link
    This article reviews the recent theoretical and experimental advances in the study of ultracold gases made of bosonic particles interacting via the long-range, anisotropic dipole-dipole interaction, in addition to the short-range and isotropic contact interaction usually at work in ultracold gases. The specific properties emerging from the dipolar interaction are emphasized, from the mean-field regime valid for dilute Bose-Einstein condensates, to the strongly correlated regimes reached for dipolar bosons in optical lattices.Comment: Review article, 71 pages, 35 figures, 350 references. Submitted to Reports on Progress in Physic
    • 

    corecore