158 research outputs found

    Theoretical Transmission Spectra During Extrasolar Giant Planet Transits

    Get PDF
    The recent transit observation of HD 209458 b - an extrasolar planet orbiting a sun-like star - confirmed that it is a gas giant and determined that its orbital inclination is 85 degrees. This inclination makes possible investigations of the planet atmosphere. In this paper we discuss the planet transmission spectra during a transit. The basic tenet of the method is that the planet atmosphere absorption features will be superimposed on the stellar flux as the stellar flux passes through the planet atmosphere above the limb. The ratio of the planet's transparent atmosphere area to the star area is small, approximately 10^{-3} to 10^{-4}; for this method to work very strong planet spectral features are necessary. We use our models of close-in extrasolar giant planets to estimate promising absorption signatures: the alkali metal lines, in particular the Na I and K I resonance doublets, and the He I 23S2^3S - 23P2^3P triplet line at 1083.0 nm. If successful, observations will constrain the line-of-sight temperature, pressure, and density. The most important point is that observations will constrain the cloud depth, which in turn will distinguish between different atmosphere models. We also discuss the potential of this method for EGPs at different orbital distances and orbiting non-solar-type stars.Comment: revised to agree with accepted paper, ApJ, in press. 12 page

    Phase light curves for extrasolar Jupiters and Saturns

    Full text link
    We predict how a remote observer would see the brightness variations of giant planets similar to Jupiter and Saturn as they orbit their central stars. We model the geometry of Jupiter, Saturn and Saturn's rings for varying orbital and viewing parameters. Scattering properties for the planets and rings at wavelenghts 0.6-0.7 microns follow Pioneer and Voyager observations, namely, planets are forward scattering and rings are backward scattering. Images of the planet with or without rings are simulated and used to calculate the disk-averaged luminosity varying along the orbit, that is, a light curve is generated. We find that the different scattering properties of Jupiter and Saturn (without rings) make a substantial difference in the shape of their light curves. Saturn-size rings increase the apparent luminosity of the planet by a factor of 2-3 for a wide range of geometries. Rings produce asymmetric light curves that are distinct from the light curve of the planet without rings. If radial velocity data are available for the planet, the effect of the ring on the light curve can be distinguished from effects due to orbital eccentricity. Non-ringed planets on eccentric orbits produce light curves with maxima shifted relative to the position of the maximum planet's phase. Given radial velocity data, the amount of the shift restricts the planet's unknown orbital inclination and therefore its mass. Combination of radial velocity data and a light curve for a non-ringed planet on an eccentric orbit can also be used to constrain the surface scattering properties of the planet. To summarize our results for the detectability of exoplanets in reflected light, we present a chart of light curve amplitudes of non-ringed planets for different eccentricities, inclinations, and the viewing azimuthal angles of the observer.Comment: 40 pages, 13 figures, submitted to Ap.

    A Precise Water Abundance Measurement for the Hot Jupiter WASP-43b

    Full text link
    The water abundance in a planetary atmosphere provides a key constraint on the planet's primordial origins because water ice is expected to play an important role in the core accretion model of planet formation. However, the water content of the Solar System giant planets is not well known because water is sequestered in clouds deep in their atmospheres. By contrast, short-period exoplanets have such high temperatures that their atmospheres have water in the gas phase, making it possible to measure the water abundance for these objects. We present a precise determination of the water abundance in the atmosphere of the 2 MJupM_\mathrm{Jup} short-period exoplanet WASP-43b based on thermal emission and transmission spectroscopy measurements obtained with the Hubble Space Telescope. We find the water content is consistent with the value expected in a solar composition gas at planetary temperatures (0.4-3.5x solar at 1 σ\sigma confidence). The metallicity of WASP-43b's atmosphere suggested by this result extends the trend observed in the Solar System of lower metal enrichment for higher planet masses.Comment: Accepted to ApJL; this version contains three supplemental figures that are not included in the published paper. See also our companion paper "Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy" by Stevenson et a

    Detectability of Exoplanetary Transits from Radial Velocity Surveys

    Full text link
    Of the known transiting extra-solar planets, a few have been detected through photometric follow-up observations of radial velocity planets. Perhaps the best known of these is the transiting exoplanet HD 209458b. For hot Jupiters (periods less than ~5 days), the a priori information that 10% of these planets will transit their parent star due to the geometric transit probability leads to an estimate of the expected transit yields from radial velocity surveys. The radial velocity information can be used to construct an effective photometric follow-up strategy which will provide optimal detection of possible transits. Since the planet-harbouring stars are already known in this case, one is only limited by the photometric precision achieveable by the chosen telescope/instrument. The radial velocity modelling code presented here automatically produces a transit ephemeris for each planet dataset fitted by the program. Since the transit duration is brief compared with the fitted period, we calculate the maximum window for obtaining photometric transit observations after the radial velocity data have been obtained, generalising for eccentric orbits. We discuss a typically employed survey strategy which may contribute to a possible radial velocity bias against detection of the very hot Jupiters which have dominated the transit discoveries. Finally, we describe how these methods can be applied to current and future radial velocity surveys.Comment: 11 pages, 8 figures, accepted for publication in MNRAS, minor correctio

    Improved Orbital Parameters and Transit Monitoring for HD 156846b

    Get PDF
    HD 156846b is a Jovian planet in a highly eccentric orbit (e = 0.85) with a period of 359.55 days. The pericenter passage at a distance of 0.16 AU is nearly aligned to our line of sight, offering an enhanced transit probability of 5.4% and a potentially rich probe of the dynamics of a cool planetary atmosphere impulsively heated during close approach to a bright star (V = 6.5). We present new radial velocity (RV) and photometric measurements of this star as part of the Transit Ephemeris Refinement and Monitoring Survey (TERMS). The RV measurements from Keck-HIRES reduce the predicted transit time uncertainty to 20 minutes, an order of magnitude improvement over the ephemeris from the discovery paper. We photometrically monitored a predicted transit window under relatively poor photometric conditions, from which our non-detection does not rule out a transiting geometry. We also present photometry that demonstrates stability at the millimag level over its rotational timescale.Comment: 7 pages, 4 figures, accepted for publication in Ap

    Twenty-One New Light Curves of OGLE-TR-56b: New System Parameters and Limits on Timing Variations

    Get PDF
    Although OGLE-TR-56b was the second transiting exoplanet discovered, only one light curve, observed in 2006, has been published besides the discovery data. We present twenty-one light curves of nineteen different transits observed between July 2003 and July 2009 with the Magellan Telescopes and Gemini South. The combined analysis of the new light curves confirms a slightly inflated planetary radius relative to model predictions, with R_p = 1.378 +/- 0.090 R_J. However, the values found for the transit duration, semimajor axis, and inclination values differ significantly from the previous result, likely due to systematic errors. The new semimajor axis and inclination, a = 0.01942 +/- 0.00015 AU and i = 73.72 +/- 0.18 degrees, are smaller than previously reported, while the total duration, T_14 = 7931 +/- 38 s, is 18 minutes longer. The transit midtimes have errors from 23 s to several minutes, and no evidence is seen for transit midtime or duration variations. Similarly, no change is seen in the orbital period, implying a nominal stellar tidal decay factor of Q_* = 10^7, with a three-sigma lower limit of 10^5.7.Comment: 14 pages, 5 figures, accepted to Ap

    Infrared radiation from an extrasolar planet

    Full text link
    A class of extrasolar giant planets - the so-called `hot Jupiters' - orbit within 0.05 AU of their primary stars. These planets should be hot and so emit detectable infrared radiation. The planet HD 209458b is an ideal candidate for the detection and characterization of this infrared light because it is eclipsed by the star. This planet has an anomalously large radius (1.35 times that of Jupiter), which may be the result of ongoing tidal dissipation, but this explanation requires a non-zero orbital eccentricity (~0.03), maintained by interaction with a hypothetical second planet. Here we report detection of infrared (24 micron) radiation from HD 209458b, by observing the decrement in flux during secondary eclipse, when the planet passes behind the star. The planet's 24 micron flux is 55 +/- 10 micro-Jy (1 sigma), with a brightness temperature of 1130 +/- 150 Kelvins, confirming the predicted heating by stellar irradiation. The secondary eclipse occurs at the midpoint between transits of the planet in front of the star (to within +/- 7 min, 1 sigma), which means that a dynamically significant orbital eccentricity is unlikely.Comment: to appear in Nature April 7, posted to Nature online March 23 (11 pages, 3 figures

    GLIMPSE: I. A SIRTF Legacy Project to Map the Inner Galaxy

    Full text link
    GLIMPSE (Galactic Legacy Infrared Mid-Plane Survey Extraordinaire), a SIRTF Legacy Science Program, will be a fully sampled, confusion-limited infrared survey of the inner two-thirds of the Galactic disk with a pixel resolution of \~1.2" using the Infrared Array Camera (IRAC) at 3.6, 4.5, 5.8, and 8.0 microns. The survey will cover Galactic latitudes |b| <1 degree and longitudes |l|=10 to 65 degrees (both sides of the Galactic center). The survey area contains the outer ends of the Galactic bar, the Galactic molecular ring, and the inner spiral arms. The GLIMPSE team will process these data to produce a point source catalog, a point source data archive, and a set of mosaicked images. We summarize our observing strategy, give details of our data products, and summarize some of the principal science questions that will be addressed using GLIMPSE data. Up-to-date documentation, survey progress, and information on complementary datasets are available on the GLIMPSE web site: www.astro.wisc.edu/glimpse.Comment: Description of GLIMPSE, a SIRTF Legacy project (Aug 2003 PASP, in press). Paper with full res.color figures at http://www.astro.wisc.edu/glimpse/glimpsepubs.htm

    Asteroseismology of the Transiting Exoplanet Host HD 17156 with HST FGS

    Full text link
    Observations conducted with the Fine Guidance Sensor on Hubble Space Telescope (HST) providing high cadence and precision time-series photometry were obtained over 10 consecutive days in December 2008 on the host star of the transiting exoplanet HD 17156b. During this time 10^12 photons (corrected for detector deadtime) were collected in which a noise level of 163 parts per million per 30 second sum resulted, thus providing excellent sensitivity to detection of the analog of the solar 5-minute p-mode oscillations. For HD 17156 robust detection of p-modes supports determination of the stellar mean density of 0.5301 +/- 0.0044 g/cm^3 from a detailed fit to the observed frequencies of modes of degree l = 0, 1, and 2. This is the first star for which direct determination of the mean stellar density has been possible using both asteroseismology and detailed analysis of a transiting planet light curve. Using the density constraint from asteroseismology, and stellar evolution modeling results in M_star = 1.285 +/- 0.026 solar, R_star = 1.507 +/- 0.012 solar, and a stellar age of 3.2 +/- 0.3 Gyr.Comment: Accepted by ApJ; 16 pages, 18 figure

    New observations of the extended hydrogen exosphere of the extrasolar planet HD209458b

    Full text link
    Atomic hydrogen escaping from the planet HD209458b provides the largest observational signature ever detected for an extrasolar planet atmosphere. However, the Space Telescope Imaging Spectrograph (STIS) used in previous observational studies is no longer available, whereas additional observations are still needed to better constrain the mechanisms subtending the evaporation process, and determine the evaporation state of other `hot Jupiters'. Here, we aim to detect the extended hydrogen exosphere of HD209458b with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST) and to find evidence for a hydrogen comet-like tail trailing the planet, which size would depend on the escape rate and the amount of ionizing radiation emitted by the star. These observations also provide a benchmark for other transiting planets, in the frame of a comparative study of the evaporation state of close-in giant planets. Eight HST orbits are used to observe two transits of HD209458b. Transit light curves are obtained by performing photometry of the unresolved stellar Lyman-alpha emission line during both transits. Absorption signatures of exospheric hydrogen during the transit are compared to light curve models predicting a hydrogen tail. Transit depths of (9.6 +/- 7.0)% and (5.3 +/- 10.0)% are measured on the whole Lyman-alpha line in visits 1 and 2, respectively. Averaging data from both visits, we find an absorption depth of (8.0 +/- 5.7)%, in good agreement with previous studies. The extended size of the exosphere confirms that the planet is likely loosing hydrogen to space. Yet, the photometric precision achieved does not allow us to better constrain the hydrogen mass loss rate.Comment: Accepted for publication in Astronomy & Astrophysics. 5 pages, 3 figure
    corecore