We predict how a remote observer would see the brightness variations of giant
planets similar to Jupiter and Saturn as they orbit their central stars. We
model the geometry of Jupiter, Saturn and Saturn's rings for varying orbital
and viewing parameters. Scattering properties for the planets and rings at
wavelenghts 0.6-0.7 microns follow Pioneer and Voyager observations, namely,
planets are forward scattering and rings are backward scattering. Images of the
planet with or without rings are simulated and used to calculate the
disk-averaged luminosity varying along the orbit, that is, a light curve is
generated. We find that the different scattering properties of Jupiter and
Saturn (without rings) make a substantial difference in the shape of their
light curves. Saturn-size rings increase the apparent luminosity of the planet
by a factor of 2-3 for a wide range of geometries. Rings produce asymmetric
light curves that are distinct from the light curve of the planet without
rings. If radial velocity data are available for the planet, the effect of the
ring on the light curve can be distinguished from effects due to orbital
eccentricity. Non-ringed planets on eccentric orbits produce light curves with
maxima shifted relative to the position of the maximum planet's phase. Given
radial velocity data, the amount of the shift restricts the planet's unknown
orbital inclination and therefore its mass. Combination of radial velocity data
and a light curve for a non-ringed planet on an eccentric orbit can also be
used to constrain the surface scattering properties of the planet. To summarize
our results for the detectability of exoplanets in reflected light, we present
a chart of light curve amplitudes of non-ringed planets for different
eccentricities, inclinations, and the viewing azimuthal angles of the observer.Comment: 40 pages, 13 figures, submitted to Ap.