1,186 research outputs found

    Atomic-scale study of the adsorption of calcium fluoride on Si(100) at low-coverage regime

    Get PDF
    We investigate, experimentally and theoretically, the initial stage of the formation of Ca/Si and Si/F structures that occurs during the adsorption of CaF2 molecules onto a bare Si(100) surface heated to 1000 K in a low-coverage regime (0.3 monolayer). A low-temperature (5 K) scanning tunneling microscope (STM) is used to observe the topographies and the electronic properties of the exposed silicon surfaces. Our atomic-scale study reveals that several chemical reactions arise during CaF2 deposition, such as dissociation of the CaF2 molecules and etching of the surface silicon dimers. The experimental and calculated STM topographies are compared using the density functional theory, and this comparison enables us to identify two types of reacted structures on the Si(100) surface. The first type of observed complex surface structure consists of large islands formed with a semiperiodic sequence of 3 × 2 unit cells. The second one is made of isolated Ca adatoms adsorbed at specific sites on the Si(100)-2 × 1 surface.Peer reviewe

    Computational and Experimental Approach to Understanding the Structural Interplay of Self-Assembled End-Terminated Alkanethiolates on Gold Surfaces

    Get PDF
    Applications of self-assembled monolayers (SAMs) on surfaces are prevalent in modern technologies and drives the need for a better understanding of the surface domain architecture of SAMs. To explore structural interaction at the interface between gold surfaces and a hydroxyl-terminated alkanethiol, 11-hydroxy-1-undecanethiol, (C11TH) we have employed a combined computational and experimental approach. Density functional theory (DFT) calculations were carried out on the thiol–gold interface using both the Perdew–Burke–Ernzerhof (PBE) and van der Waals (optB86b) density functionals. Our ab initio molecular dynamics (AIMD) simulations revealed that the interface consists of four different distinguished phases, each with different C11TH orientations. Experiments involved deposition of C11TH SAMs onto gold, with the resultant surfaces examined with X-ray photoelectron spectroscopy (XPS) and ellipsometry. Weighted average projected density of states (PDOS) of the different phases were photoionization cross section corrected and these were confirmed by experimental XPS data. Computed molecular parameters including tilt angles and the thickness of SAMs also agreed with the XPS and ellipsometry results. Hydrogen bonding arising from the terminal hydroxyl groups is the primary factor governing the stability of the four phases. Experimental results from XPS and ellipsometry along with DFT simulation results provide insights into the formation of the different orientations of SAM on Au(111) which will guide future efforts in the self-assembled SAMs architecture for other thiols or metal substrates

    Reply to the comment on "Imaging of the Hydrogen Subsurface Site in Rutile TiO2''

    Get PDF
    A reply to the Comment by M. Calatayud et al. on "Imaging of the Hydrogen Subsurface Site in Rutile TiO2" (Physical Review Letters, Volume 102, Issue 13). DOI: 10.1103/physrevlett.102.136103.Peer reviewe

    Imaging of the Hydrogen Subsurface Site in Rutile TiO2

    Get PDF
    From an interplay between simultaneously recorded noncontact atomic force microscopy and scanning tunneling microscopy images and simulations based on density functional theory, we reveal the location of single hydrogen species in the surface and subsurface layers of rutile TiO2. Subsurface hydrogen atoms (Hsub) are found to reside in a stable interstitial site as subsurface OH groups detectable in scanning tunneling microscopy as a characteristic electronic state but imperceptible to atomic force microscopy. The combined atomic force microscopy, scanning tunneling microscopy, and density functional theory study demonstrates a general scheme to reveal near surface defects and interstitials in poorly conducting materials.Peer reviewe

    ESO Imaging Survey. The Stellar Catalogue in the Chandra Deep Field South

    Full text link
    (abridged) Stellar catalogues in five passbands (UBVRI) over an area of approximately 0.3 deg^2, comprising about 1200 objects, and in seven passbands (UBVRIJK) over approximately 0.1 deg^2, comprising about 400 objects, in the direction of the Chandra Deep Field South are presented. The 90% completeness level of the number counts is reached at approximately U = 23.8, B = 24.0, V = 23.5, R = 23.0, I = 21.0, J = 20.5, K = 19.0. A scheme is presented to select point sources from these catalogues, by combining the SExtractor parameter CLASS_STAR from all available passbands. Probable QSOs and unresolved galaxies are identified by using the previously developed \chi^2-technique (Hatziminaoglou et al 2002), that fits the overall spectral energy distributions to template spectra and determines the best fitting template. The observed number counts, colour-magnitude diagrams, colour-colour diagrams and colour distributions are presented and, to judge the quality of the data, compared to simulations based on the predictions of a Galactic Model convolved with the estimated completeness functions and the error model used to describe the photometric errors of the data. The resulting stellar catalogues and the objects identified as likely QSOs and unresolved galaxies with coordinates, observed magnitudes with errors and assigned spectral types by the χ2\chi^2-technique are presented and are publicly available.Comment: Paper as it will appear in print. Complete figures and tables can be obtained from: http://www.eso.org/science/eis/eis_pub/eis_pub.html. Astronomy & Astrophysics, accepted for publicatio

    Test of CPT Symmetry and Quantum Mechanics with Experimental data from CPLEAR

    Full text link
    We use fits to recent published CPLEAR data on neutral kaon decays to π+π\pi^+\pi^- and πeν\pi e\nu to constrain the CPT--violation parameters appearing in a formulation of the neutral kaon system as an open quantum-mechanical system. The obtained upper limits of the CPT--violation parameters are approaching the range suggested by certain ideas concerning quantum gravity.Comment: 9 pages of uuencoded postscript (includes 3 figures

    Workgroup Report: Workshop on Source Apportionment of Particulate Matter Health Effects—Intercomparison of Results and Implications

    Get PDF
    Although the association between exposure to ambient fine particulate matter with aerodynamic diameter < 2.5 μm (PM(2.5)) and human mortality is well established, the most responsible particle types/sources are not yet certain. In May 2003, the U.S. Environmental Protection Agency’s Particulate Matter Centers Program sponsored the Workshop on the Source Apportionment of PM Health Effects. The goal was to evaluate the consistency of the various source apportionment methods in assessing source contributions to daily PM(2.5) mass–mortality associations. Seven research institutions, using varying methods, participated in the estimation of source apportionments of PM(2.5) mass samples collected in Washington, DC, and Phoenix, Arizona, USA. Apportionments were evaluated for their respective associations with mortality using Poisson regressions, allowing a comparative assessment of the extent to which variations in the apportionments contributed to variability in the source-specific mortality results. The various research groups generally identified the same major source types, each with similar elemental makeups. Intergroup correlation analyses indicated that soil-, sulfate-, residual oil-, and salt-associated mass were most unambiguously identified by various methods, whereas vegetative burning and traffic were less consistent. Aggregate source-specific mortality relative risk (RR) estimate confidence intervals overlapped each other, but the sulfate-related PM(2.5) component was most consistently significant across analyses in these cities. Analyses indicated that source types were a significant predictor of RR, whereas apportionment group differences were not. Variations in the source apportionments added only some 15% to the mortality regression uncertainties. These results provide supportive evidence that existing PM(2.5) source apportionment methods can be used to derive reliable insights into the source components that contribute to PM(2.5) health effects

    An investigation of chromospheric activity spanning the Vaughan--Preston gap: impact on stellar ages

    Full text link
    Chromospheric activity is widely used as an age indicator for solar-type stars based on the early evidence that there is a smooth evolution from young and active to old and inactive stars. We analysed chromospheric activity in five solar-type stars in two open clusters, in order to study how chromospheric activity evolves with time. We took UVES high-resolution, high S/N ratio spectra of 3 stars in IC 4756 and 2 in NGC 5822, which were combined with a previously studied data-set and reanalysed here. The emission core of the deep, photospheric Ca II K line was used as a probe of the chromospheric activity. All of the 5 stars in the new sample, including those in the 1.2 Gyr-old NGC 5822, have activity levels comparable to those of Hyades and Praesepe. A likely interpretation of our data is that solar-type-star chromospheric activity, from the age of the Hyades until that of the Sun, does not evolve smoothly. Stars change from active to inactive on a short timescale. Evolution before and after such a transition is much less significant than cyclical and long-term variations. We show that data presented in the literature to support a correlation between age and activity could be also interpreted differently in the light of our results.Comment: 5 pages, 2 Figures, 1 Table, published in A&A

    The age-mass-metallicity-activity relation for solar-type stars: comparisons with asteroseismology and the NGC 188 open cluster

    Get PDF
    Context. The Mount Wilson Ca ii index log is the accepted standard metric of calibration for the chromospheric activity versus age relation for FGK stars. Recent results claim its inability to discern activity levels, and thus ages, for stars older than ~2 Gyr, which would severely hamper its application to date disk stars older than the Sun. Aims. We present a new activity-age calibration of the Mt. Wilson index that explicitly takes mass and [Fe/H] biases into account; these biases are implicit in samples of stars selected to have precise ages, which have so far not been appreciated. Methods. We show that these selection biases tend to blur the activity-age relation for large age ranges. We calibrate the Mt. Wilson index for a sample of field FGK stars with precise ages, covering a wide range of mass and [Fe/H] , augmented with data from the Pleiades, Hyades, M 67 clusters, and the Ursa Major moving group. Results. We further test the calibration with extensive new Gemini/GMOS log ()R'HK) data of the old, solar [Fe/H] clusters, M 67 and NGC 188. The observed NGC 188 activity level is clearly lower than M 67. We correctly recover the isochronal age of both clusters and establish the viability of deriving usable chromospheric ages for solar-type stars up to at least ~6 Gyr, where average errors are ~0.14 dex provided that we explicitly account for the mass and [Fe/H] dimensions. We test our calibration against asteroseismological ages, finding excellent correlation (ρ = + 0.89). We show that our calibration improves the chromospheric age determination for a wide range of ages, masses, and metallicities in comparison to previous age-activity relations

    Detailed scanning probe microscopy tip models determined from simultaneous atom-resolved AFM and STM studies of the TiO2(110) surface

    Get PDF
    Enevoldsen GH, Pinto HP, Foster AS, et al. Detailed scanning probe microscopy tip models determined from simultaneous atom-resolved AFM and STM studies of the TiO2(110) surface. Physical Review B. 2008;78(4):045416.The atomic-scale contrast in noncontact atomic force microscopy (nc-AFM) images is determined by the geometry and exact atomic structure of the tip apex. However, the tip state is an experimentally unknown parameter, and the lack of insight into the tip apex often limits the possibilities of extracting precise quantitative and qualitative atomistic information on the surface under inspection. From an interplay between simultaneously recorded nc-AFM and scanning tunneling microscopy (STM) data, and atomistic STM simulations based on multiple scattering theory, we demonstrate how the state of the scanning probe microscopy (SPM) tip in the experiments may be determined. The analysis of a large number of experimental SPM images recorded with different tips reveals that no general correlation exists between the contrast observed in the nc-AFM and the tunneling current (I-t) images on TiO2(110) surface. The exact state of the SPM tip must, therefore, be determined for each specific case, which is normally a very difficult endeavor. However, our analysis of the AFM contrast on TiO2(110) surface allows us to considerably reduce the number of tips to be considered in a full simulation. By carefully evaluating the contrast of a handpicked library of SPM tips, we manage to determine a very accurate model of the SPM tip used in an experiment for the first time. It is envisioned that the approach presented here may eventually be used in future studies to screen for and select a SPM tip with a special functionalization prior to imaging an unknown sample, and in that way facilitate precise modeling and chemical identification of surface species
    corecore